|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1228034329 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
201226s2021 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d EBLCP
|d OCLCQ
|d REDDC
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781119801788
|
020 |
|
|
|a 1119801788
|
035 |
|
|
|a (OCoLC)1228034329
|
050 |
|
4 |
|a N72.M3
|b .S347 2020
|
082 |
0 |
4 |
|a 701
|q OCoLC
|2 23/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Scheps, Ruth.
|
245 |
1 |
0 |
|a Mathematics in the Visual Arts
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2021.
|
300 |
|
|
|a 1 online resource (195 p.)
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Infinity of God and Space of Men in Painting, Conditions of Possibility for the Scientific Revolution -- 1.1. A brief introduction to infinity -- 1.2. Infinity in painting and the invention of mathematical space -- 1.3. Geometrical optics and the subject in projective space -- 1.4. The limit of time, calculus and algebra -- 1.5. Rational spaces: from trade to physics -- 1.6. Setting a priori conditions of representation and knowledge -- 1.7. Spaces of possibilities for the evolution of life?
|
505 |
8 |
|
|a 1.8. Conclusion and opening: heterogeneous spaces of biological evolution -- 2. Geometry and the Life of Forms -- 2.1. Introduction -- 2.2. Taking form -- 2.2.1. Early geometries -- 2.2.2. Geometrizing complexity -- 2.2.3. Morphogeneses -- 2.3. Art and geometry -- 2.3.1. Geometric art before its time -- 2.3.2. From geometric abstraction to digital art -- 2.3.3. Three legatees of geometric art -- 2.4. Beyond geometry -- 2.4.1. Quantic and cosmic -- 2.4.2. Outline and content -- 2.4.3. From form to the sublime -- 3. Among the Trees: Iterating Geneses of Forms, in Art and Nature
|
505 |
8 |
|
|a 4. The Passion of Flight: From Leonardo da Vinci to Jean Letourneur -- 4.1. Introduction: from legend to reality -- 4.2. Leonardo da Vinci and the basis of the theory of flight -- 4.2.1. Chief engineer to Francis I of France -- 4.2.2. The flying propeller -- 4.2.3. Flapping-wing flight -- 4.2.4. Why can't man fly like a bird? -- 4.2.5. The basis of Leonardo da Vinci's theory of flight -- 4.3. Pioneers of the air and the first fluid movement visualizations -- 4.3.1. Clément Ader (1841-1925), a distant successor of Leonardo da Vinci, invents the aeroplane
|
505 |
8 |
|
|a 4.3.2. The oil king presides over the surge in flight -- 4.3.3. From Magnus to Lanchester: the difficult gestation of the theory of flight -- 4.3.4. Gustave Eiffel highlights the suction component of lift force -- 4.3.5. Étienne-Jules Marey takes the first images of fluid movement -- 4.4. From Henri Werlé to Jean Letourneur, the sculptor of fluid movement -- 4.4.1. Henri Werlé or "the Master" of ONERA's water tunnel -- 4.4.2. Jean Letourneur, interpreter of snapshots -- 4.4.3. As the 21st Century dawns, Jean Letourneur gathers momentum -- 4.5. Conclusion
|
505 |
8 |
|
|a 4.6. Appendix: additions to the chapter entitled "Why Can't Man Fly?", which refers to the article by Marielle Vergès and Kamil Fadel (see footnote 15) -- 5. Sculptor of Fluid Movement -- 5.1. References -- 6. Internal Geometry of "Salvator Mundi" (The "Cook Version", Attributed to Leonardo da Vinci) -- 6.1. Introduction -- 6.2. Distinctive features of the works of Leonardo da Vinci -- 6.3. Presentation of the Salvator Mundi, Cook version -- 6.4. Investigating the compositional mesh -- 6.5. Compositional format -- 6.6. Elements of the internal geometry of the Salvator Mundi, Cook version
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics in art.
|
650 |
|
6 |
|a Mathématiques dans l'art.
|
700 |
1 |
|
|a Maurel, Marie-Christine.
|
758 |
|
|
|i has work:
|a Mathematics in the visual arts (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFH4WqwH8j9QR7qdqcKgXd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Scheps, Ruth
|t Mathematics in the Visual Arts
|d Newark : John Wiley & Sons, Incorporated,c2021
|z 9781786306814
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6420854
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6420854
|
994 |
|
|
|a 92
|b IZTAP
|