Statistical Topics and Stochastic Models for Dependent Data with Applications Applications in Reliability, Survival Analysis and Related Fields.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Part 1 Markov and Semi-Markov Processes
- Chapter 1 Variable Length Markov Chains, Persistent Random Walks: A Close Encounter
- 1.1. Introduction
- 1.2. VLMCs: definition of the model
- 1.3. Definition and behavior of PRWs
- 1.3.1. PRWs in dimension one
- 1.3.2. PRWs in dimension two
- 1.4. VLMC: existence of stationary probability measures
- 1.5. Where VLMC and PRW meet
- 1.5.1. Semi-Markov chains and Markov additive processes
- 1.5.2. PRWs induce semi-Markov chains
- 3.3.2. Two-stage model
- 3.3.3. H model
- 3.3.4. Three-stage model
- 3.3.5. N-stage model
- 3.3.6. Other extensions
- 3.4. Markov chain stock models
- 3.4.1. Hurley and Johnson model
- 3.4.2. Yao model
- 3.4.3. Markov stock model
- 3.4.4. Multivariate Markov chain stock model
- 3.5. Conclusion
- 3.6. References
- Chapter 4 Estimation of Piecewise-deterministic Trajectories in a Quantum Optics Scenario
- 4.1. Introduction
- 4.1.1. The postulates of quantum mechanics
- 4.1.2. Dynamics of open quantum Markovian systems
- 4.1.3. Stochastic wave function: quantum dynamics as PDPs
- 4.1.4. Estimation for PDPs
- 4.2. Problem formulation
- 4.2.1. Atom-field interaction
- 4.2.2. Piecewise-deterministic trajectories
- 4.2.3. Measures
- 4.3. Estimation procedure
- 4.3.1. Strategy
- 4.3.2. Least-square estimators
- 4.3.3. Numerical experiments
- 4.4. Physical interpretation
- 4.5. Concluding remarks
- 4.6. References
- Chapter 5 Identification of Patterns in a Semi-Markov Chain
- 5.1. Introduction
- 5.2. The prefix chain
- 5.3. The semi-Markov setting
- 5.4. The hitting time of the pattern
- 5.5. A genomic application
- 5.6. Concluding remarks
- 5.7. References
- Part 2 Autoregressive Processes
- Chapter 6 Time Changes and Stationarity Issues for Continuous Time Autoregressive Processes of Order
- 6.1. Introduction
- 6.2. Basics
- 6.3. Stationary AR processes
- 6.3.1. Formulas for the two first-order moments
- 6.3.2. Examples
- 6.3.3. Conditions for stationarity of CAR1(p) processes
- 6.4. Time transforms
- 6.4.1. Properties of time transforms
- 6.4.2. MS processes
- 6.5. Conclusion
- 6.6. Appendix
- 6.7. References
- Chapter 7 Sequential Estimation for Non-parametric Autoregressive Models
- 7.1. Introduction
- 7.2. Main conditions