Cargando…

Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields /

"We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-functi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Berger, Lisa, 1969- (Autor), Hall, Chris, 1975- (Autor), Pannekoek, René (Autor), Park, Jennifer Mun Young (Autor), Pries, Rachel, 1972- (Autor), Sharif, Shahed, 1977- (Autor), Silverberg, Alice (Autor), Ulmer, Douglas, 1960- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society, number 1295
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V]2. When r> 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J(L) = {0} for any abelian extension L of Fp(t)"--
Notas:"Forthcoming, volume 266, number 1295."
Descripción Física:1 online resource (v, 144 pages)
Bibliografía:Includes bibliographical references.
ISBN:1470462532
9781470462536
ISSN:0065-9266 ;