Cargando…

Elementary Number Theory /

Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back­ ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jones, Gareth A. (Autor), Jones, J. Mary (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint : Springer, 1998.
Colección:Springer undergraduate mathematics series,
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1159655753
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nn||||mama|
008 121227s1998 enk ob 001 0 eng d
010 |z  97041193  
040 |a UKBTH  |b eng  |e pn  |c UKBTH  |d OCLCO  |d EBLCP  |d S2H  |d KIJ  |d OCLCF  |d OCLCQ  |d VT2  |d UPM  |d I9W  |d UV0  |d GW5XE  |d YDX  |d UAB  |d U3W  |d AU@  |d TKN  |d LEAUB  |d YDXIT  |d UKAHL  |d LIP  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d INARC 
015 |a GB9857157  |2 bnb 
019 |a 828772791  |a 840277148  |a 958525644  |a 1057984002  |a 1113106214  |a 1117174037  |a 1120901898  |a 1262679335  |a 1424809200 
020 |a 9781447106135 
020 |a 144710613X 
020 |a 3540761977  |q (Berlin ;  |q pbk. ;  |q acid-free paper) 
020 |a 9783540761976 
020 |z 9781447106135 
024 7 |a 10.1007/978-1-4471-0613-5.  |2 doi 
029 1 |a AU@  |b 000051745634 
029 1 |a NZ1  |b 14979227 
029 1 |a NZ1  |b 15350016 
035 |a (OCoLC)1159655753  |z (OCoLC)828772791  |z (OCoLC)840277148  |z (OCoLC)958525644  |z (OCoLC)1057984002  |z (OCoLC)1113106214  |z (OCoLC)1117174037  |z (OCoLC)1120901898  |z (OCoLC)1262679335  |z (OCoLC)1424809200 
037 |a 3074593  |b Proquest Ebook Central 
050 4 |a QA241-247.5 
072 7 |a PBH.  |2 bicssc 
072 7 |a MAT022000.  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
084 |a 31.14  |2 bcl 
084 |a SK 180  |2 rvk 
084 |a 27  |2 sdnb 
049 |a UAMI 
100 1 |a Jones, Gareth A.,  |e author. 
245 1 0 |a Elementary Number Theory /  |c by Gareth A. Jones, J. Mary Jones. 
264 1 |a London :  |b Springer London :  |b Imprint :  |b Springer,  |c 1998. 
300 |a 1 online resource (XIV, 302 pages) :  |b online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
500 |a Bibliographic Level Mode of Issuance: Monograph. 
505 0 |a 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout's identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler's Function -- 5.1 Units -- 5.2 Euler's function -- 5.3 Applications of Euler's function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating?(2) -- 9.6 Evaluating?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski's Theorem -- 10.7 Supplementary exercises -- 11. Fermat's Last Theorem -- 11.1 The problem -- 11.2 Pythagoras's Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names. 
520 |a Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back­ ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some el­ ementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in math­ ematics. Throughout the book, we have attempted to explain our arguments as fully and as clearly as possible, with plenty of worked examples and with outline solutions for all the exercises. There are several good reasons for choosing number theory as a subject. It has a long and interesting history, ranging from the earliest recorded times to the present day (see Chapter 11, for instance, on Fermat's Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study of number theory is an excellent introduction to the development and achievements of mathematics (and, indeed, some of its failures). In particular, the explicit nature of many of its problems, concerning basic properties of inte­ gers, makes number theory a particularly suitable subject in which to present modern mathematics in elementary terms. 
546 |a English. 
504 |a Includes bibliographical references (pages 289-290) and indexes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 6 |a Mathématiques. 
650 6 |a Théorie des nombres. 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a Matemáticas  |2 embne 
650 0 7 |a Números , Teoría de  |2 embucm 
650 7 |a Mathematics  |2 fast 
650 7 |a Number theory  |2 fast 
650 7 |a Zahlentheorie  |2 gnd 
650 7 |a Nombres, Théorie des.  |2 ram 
700 1 |a Jones, J. Mary.,  |e author. 
758 |i has work:  |a Elementary number theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGGCphGXgytfD64PCJhMbm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Printed edition:  |z 9783540761976 
830 0 |a Springer undergraduate mathematics series,  |x 1615-2085 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3074593  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29622488 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3074593 
938 |a YBP Library Services  |b YANK  |n 13371357 
938 |a Internet Archive  |b INAR  |n elementarynumber0000jone 
994 |a 92  |b IZTAP