Loading…

Degree theory of immersed hypersurfaces /

The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Authors: Rosenberg, H. (Harold), 1941- (Author), Smith, Graham (Graham Andrew Craig) (Author)
Format: Electronic eBook
Language:Inglés
Published: Providence : American Mathematical Society, [2020].
Series:Memoirs of the American Mathematical Society ; no. 1290.
Subjects:
Online Access:Texto completo
Table of Contents:
  • Cover
  • Title page
  • Chapter 1. Introduction
  • 1.1. General
  • 1.2. Background
  • 1.3. Applications
  • Acknowledgments
  • Chapter 2. Degree theory
  • 2.1. The manifold of immersions and its tangent bundle
  • 2.2. Curvature as a vector field
  • 2.3. Simplicity
  • 2.4. Surjectivity
  • 2.5. Finite dimensional sections
  • 2.6. Extensions
  • 2.7. Orientation
  • the finite-dimensional case
  • 2.8. Orientation
  • the infinite-dimensional case
  • 2.9. Constructing the degree
  • 2.10. Varying the metric
  • Chapter 3. Applications
  • 3.1. The generalised Simons' formula
  • 3.2. Prescribed mean curvature
  • 3.3. Calculating the Degree
  • 3.4. Extrinstic Curvature
  • 3.5. Special Lagrangian curvature
  • 3.6. Extrinsic curvature in two dimensions
  • Appendix A. Weakly smooth maps
  • Appendix B. Prime immersions
  • Bibliography
  • Back Cover