Cargando…

Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Malcata, F. Xavier
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2020.
Colección:Enzyme Reaction Engineering Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Author
  • Series Preface
  • Preface
  • Volume 1
  • 1 Basic Concepts of Algebra
  • 1 Scalars, Vectors, Matrices, and Determinants
  • 2 Function Features
  • 2.1 Series
  • 2.2 Multiplication and Division of Polynomials
  • 2.3 Trigonometric Functions
  • 2.4 Hyperbolic Functions
  • 3 Vector Operations
  • 3.1 Addition of Vectors
  • 3.2 Multiplication of Scalar by Vector
  • 3.3 Scalar Multiplication of Vectors
  • 3.4 Vector Multiplication of Vectors
  • 4 Matrix Operations
  • 4.1 Addition of Matrices
  • 4.2 Multiplication of Scalar by Matrix
  • 4.3 Multiplication of Matrices
  • 4.4 Transposal of Matrices
  • 4.5 Inversion of Matrices
  • 4.6 Combined Features
  • 5 Tensor Operations
  • 6 Determinants
  • 6.1 Definition
  • 6.2 Calculation
  • 6.3 Eigenvalues and Eigenvectors
  • 7 Solution of Algebraic Equations
  • 7.1 Linear Systems of Equations
  • 7.2 Quadratic Equation
  • 7.3 Lambert's W Function
  • 7.4 Numerical Approaches
  • Further Reading
  • Volume2
  • About the Author
  • Series Preface
  • Preface
  • 2 Basic Concepts of Calculus
  • 8 Limits, Derivatives, Integrals, and Differential Equations
  • 9 Limits and Continuity
  • 9.1 Univariate Limit
  • 9.2 Multivariate Limit
  • 9.3 Basic Theorems on Limits
  • 9.4 Definition of Continuity
  • 9.5 Basic Theorems on Continuity
  • 10 Differentials, Derivatives, and Partial Derivatives
  • 10.1 Differential
  • 10.2 Derivative
  • 10.3 Dependence Between Functions
  • 10.4 Optimization of Univariate Continuous Functions
  • 10.5 Optimization of Multivariate Continuous Functions
  • 11 Integrals
  • 11.1 Univariate Integral
  • 11.2 Multivariate Integral
  • 11.3 Optimization of Single Integral
  • 11.4 Optimization of Set of Derivatives
  • 12 Infinite Series and Integrals
  • 12.1 Definition and Criteria of Convergence
  • 12.2 Taylor's Series
  • 12.3 Gamma Function and Factorial
  • 13 Analytical Geometry
  • 13.1 Straight Line
  • 13.2 Simple Polygons
  • 13.3 Conical Curves
  • 13.4 Length of Line
  • 13.5 Curvature of Line
  • 13.6 Area of Plane Surface
  • 13.7 Outer Area of Revolution Solid
  • 13.8 Volume of Revolution Solid
  • 14 Transforms
  • 14.1 Laplace's Transform
  • 14.2 Legendre's Transform
  • 15 Solution of Differential Equations
  • 15.1 Ordinary Differential Equations
  • 15.2 Partial Differential Equations
  • 16 Vector Calculus
  • 16.1 Rectangular Coordinates
  • 16.2 Cylindrical Coordinates
  • 16.3 Spherical Coordinates
  • 16.4 Curvature of Three-dimensional Surfaces
  • 16.5 Three-dimensional Integration
  • 17 Numerical Approaches to Integration
  • 17.1 Calculation of Definite Integrals
  • 17.2 Integration of Differential Equations
  • 3 Basic Concepts of Statistics
  • 18 Continuous Probability Functions
  • 18.1 Basic Statistical Descriptors
  • 18.2 Normal Distribution
  • 18.3 Other Relevant Distributions
  • 19 Statistical Hypothesis Testing
  • 20 Linear Regression
  • 20.1 Parameter Fitting
  • 20.2 Residual Characterization
  • 20.3 Parameter Inference