Quasi-periodic standing wave solutions of gravity-capillary water waves /
The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1273. |
Temas: |
Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}
> Incompressible inviscid fluids
> Water waves, gravity waves; dispersion and scattering, nonlinear interaction.
Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX]
> Infinite-dimensional Hamiltonian systems [See also 35Axx, 35Qxx]
> Perturbations, KAM for inf.
Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}
> Incompressible viscous fluids
> Capillarity (surface tension) [See also 76B45].
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction and main result
- 1.1. Ideas of proof
- 1.2. Notation
- Chapter 2. Functional setting
- 2.1. Pseudo-differential operators and norms
- 2.2. ^{ ₀}-tame and ^{ ₀}-modulo-tame operators
- 2.3. Integral operators and Hilbert transform
- 2.4. Dirichlet-Neumann operator
- Chapter 3. Transversality properties of degenerate KAM theory
- Chapter 4. Nash-Moser theorem and measure estimates
- 4.1. Nash-Moser Théoréme de conjugaison hypothétique
- 4.2. Measure estimates
- Chapter 5. Approximate inverse
- 5.1. Estimates on the perturbation
- 5.2. Almost approximate inverse
- Chapter 6. The linearized operator in the normal directions
- 6.1. Linearized good unknown of Alinhac
- 6.2. Symmetrization and space reduction of the highest order
- 6.3. Complex variables
- 6.4. Time-reduction of the highest order
- 6.5. Block-decoupling up to smoothing remainders
- 6.6. Elimination of order \paₓ: Egorov method
- 6.7. Space reduction of the order ^{1/2}
- 6.8. Conclusion: partial reduction of ℒ_{\om}
- Chapter 7. Almost diagonalization and invertibility of ℒ_{\om}
- 7.1. Proof of Theorem 7.3
- 7.2. Almost-invertibility of ℒ_{\om}
- Chapter 8. The Nash-Moser iteration
- 8.1. Proof of Theorem 4.1
- Appendix A. Tame estimates for the flow of pseudo-PDEs
- Bibliography
- Back Cover