Quasi-periodic standing wave solutions of gravity-capillary water waves /
The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1273. |
Temas: |
Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}
> Incompressible inviscid fluids
> Water waves, gravity waves; dispersion and scattering, nonlinear interaction.
Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX]
> Infinite-dimensional Hamiltonian systems [See also 35Axx, 35Qxx]
> Perturbations, KAM for inf.
Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}
> Incompressible viscous fluids
> Capillarity (surface tension) [See also 76B45].
|
Acceso en línea: | Texto completo |
Sumario: | The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure. |
---|---|
Notas: | "January 2020, volume 263, number 1273 (third of of 7 numbers)." |
Descripción Física: | 1 online resource (v, 171 pages) |
Bibliografía: | Includes bibliographical references. |
ISBN: | 9781470456542 1470456540 |