Cargando…

Nonlinear diffusion equations and curvature conditions in metric measure spaces /

Aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X, d, m). On the geometric side, our new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one inve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ambrosio, Luigi (Autor), Mondino, Andrea (Autor), Savaré, Giuseppe (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019]
Colección:Memoirs of the American Mathematical Society ; no. 1270.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X, d, m). On the geometric side, our new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, our new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD*(K, N) condition of Bacher-Sturm.
Notas:"November 2019; Volume 262; number 1270 (seventh of 7 numbers)"--Cover
Descripción Física:1 online resource (v, 121 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 119-121)
ISBN:9781470455149
1470455145
ISSN:0065-9266 ;