|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1125224976 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
191029s2014 pl a ob 000 0 eng d |
010 |
|
|
|a 2018469748
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d YDX
|d OCLCQ
|d VT2
|d OCLCO
|d K6U
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1125085726
|a 1262677395
|a 1272925797
|a 1393049263
|
020 |
|
|
|a 9788378864714
|q (electronic bk.)
|
020 |
|
|
|a 8378864715
|q (electronic bk.)
|
020 |
|
|
|z 9788378861072
|
020 |
|
|
|z 8378861074
|
035 |
|
|
|a (OCoLC)1125224976
|z (OCoLC)1125085726
|z (OCoLC)1262677395
|z (OCoLC)1272925797
|z (OCoLC)1393049263
|
050 |
|
4 |
|a QB981
|b .M38 2014
|
082 |
0 |
4 |
|a 523.1
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Mathematical structures of the Universe /
|c edited by Michał Eckstein, Michael Heller, Sebastian J. Szybka.
|
264 |
|
1 |
|a Kraków :
|b Copernicus Center Press,
|c 2014.
|
300 |
|
|
|a 1 online resource (457 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro; Mathematical Structures of the Universe; Table of Contents; Introduction; Part I. General Relativity and Cosmology; Observer dependent geometries; 1. Geometry for observers and observables; 2. Geometry of the clock postulate: Finsler spacetimes; 2.1. De˝nition of Finsler spacetimes; 2.2. Causal structure and observers; 2.3. Dynamics for point masses; 2.4. Observers and observations; 2.5. Field theory; 2.6. Gravity; 3. The local perspective: Cartan geometry of observer space; 3.1. Definition of observer space; 3.2. Introduction to Cartan geometry; 3.3. Cartan geometry of observer space
|
505 |
8 |
|
|a 3.4. Observers and observations3.5. Gravity; 3.6. The role of spacetime; Acknowledgments; References; Classification of classical singularities: a differential spaces approach; 1. Motivation; 2. Fundamental concepts; 3. Spectral properties; 4. B-boundary; 5. Singularities; Acknowledgment; References; The smooth beginning of the Universe; 1. Introduction; 2. Sikorski's di˙erential spaces and GR; 3. A differential space for the flat FRW d-manifold; 4. Time orientability; 5. A smooth evolution with respect to cosmological time; 6. The simplest smoothly evolving models; 7. Interpretation
|
505 |
8 |
|
|a 8. Smoothly evolved models in a neighbourhood of singularity9. Summary; Acknowledgments; References; Are singularities the limits of cosmology?; 1. What are singularities?; 2. Big-Bang and non-Big-Bang singularities in cosmology; 2.1. The strength of singularities; 2.2. Geodesics and geodesic deviation; 2.3. Spacetime averaging; 2.4. Energy conditions; 3. Properties and classification of singularities; 4. Varying constants removing or changing singularities; 4.1. Removing a Big-Bang singularity -- VG; 4.2. Removing SFS or FSF -- VSL; 4.3. Removing SFS or FSF -- VG; 4.4. A hybrid case -- VG
|
505 |
8 |
|
|a Two-body problem in General RelativitySummary; Acknowledgments; References; Part II. Quantum Geometries; Geometry of quantum correlations; 1. Introduction; 2. The geometry of quantum mechanics; 3. A symplectic setting for classical mechanics; 4. Classical Hamiltonian systems with symmetry; 5. Symplectic structures in spaces of quantum states; 6. Composite quantum systems; separable and entangled states; 7. Quantum correlations and symplectic geometry; 7.1. Symplectic measures of entanglement; 7.2. Local unitary equivalence of states
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cosmology.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Relativity.
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Cosmologie.
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
6 |
|a Relativité.
|
650 |
|
7 |
|a cosmology.
|2 aat
|
650 |
|
7 |
|a Cosmology
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
650 |
|
7 |
|a Relativity
|2 fast
|
700 |
1 |
|
|a Eckstein, Michał,
|e editor.
|
700 |
1 |
|
|a Heller, Michał,
|e editor.
|
700 |
1 |
|
|a Szybka, Sebastian J.,
|e editor.
|
758 |
|
|
|i has work:
|a Mathematical structures of the Universe (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFGX6wfxXJhkc7RXYj3gfC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Mathematical structures of the Universe.
|d Kraków : Copernicus Center Press, 2014
|z 9788378861072
|w (OCoLC)890180493
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5964808
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5964808
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2282121
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16515799
|
938 |
|
|
|a Internet Archive
|b INAR
|n isbn_9788378861072
|
994 |
|
|
|a 92
|b IZTAP
|