Cargando…

An Introduction to Probability and Stochastic Processes /

These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berger, Marc A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1993.
Colección:Springer texts in statistics,
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • I. Univariate Random Variables
  • Discrete Random Variables
  • Properties of Expectation
  • Properties of Characteristic Functions
  • Basic Distributions
  • Absolutely Continuous Random Variables
  • Basic Distributions
  • Distribution Functions
  • Computer Generation of Random Variables
  • Exercises
  • II. Multivariate Random Variables
  • Joint Random Variables
  • Conditional Expectation
  • Orthogonal Projections
  • Joint Normal Distribution
  • Multi-Dimensional Distribution Functions
  • Exercises
  • III. Limit Laws
  • Law of Large Numbers
  • Weak Convergence
  • Bochner's Theorem
  • Extremes
  • Extremal Distributions
  • Large Deviations
  • Exercises
  • IV. Markov Chains--Passage Phenomena
  • First Notions and Results
  • Limiting Diffusions
  • Branching Chains
  • Queueing Chains
  • Exercises
  • V. Markov Chains--Stationary Distributions and Steady State
  • Stationary Distributions
  • Geometric Ergodicity
  • Examples
  • Exercises
  • VI. Markov Jump Processes
  • Pure Jump Processes
  • Poisson Process
  • Birth and Death Process
  • Exercises
  • VII. Ergodic Theory with an Application to Fractals
  • Ergodic Theorems
  • Subadditive Ergodic Theorem
  • Products of Random Matrices
  • Oseledec's Theorem
  • Fractals
  • Bibliographical Comments
  • Exercises
  • References
  • Solutions (Sections I-V).