Cargando…

On the stability of type I blow up for the energy super critical heat equation /

The authors consider the energy super critical semilinear heat equation \partial _{t}u=\Delta u+u^{p}, x\in \mathbb{R}^3, p>5. The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Collot, Charles, 1990- (Autor), Raphaël, Pierre, 1975- (Autor), Szeftel, Jérémie, 1977- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1255.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Chapter 1. Introduction; 1.1. Setting of the problem; 1.2. Type I and type II blow up; 1.3. Statement of the result; Acknowledgments; Notations; Organization of the paper; Chapter 2. Construction of self-similar profiles; 2.1. Exterior solutions; 2.2. Constructing interior self-similar solutions; 2.3. The matching; Chapter 3. Spectral gap in weighted norms; 3.1. Decomposition in spherical harmonics; 3.2. Linear ODE analysis; 3.3. Perturbative spectral analysis; 3.4. Proof of Proposition 3.1; Chapter 4. Dynamical control of the flow; 4.1. Setting of the bootstrap
  • 4.2. ^{∞} bound4.3. Modulation equations; 4.4. Energy estimates with exponential weights; 4.5. Outer global ² bound; 4.6. Control of the critical norm; 4.7. Conclusion; 4.8. The Lipschitz dependence; Appendix A. Coercivity estimates; Appendix B. Proof of (4.43); Appendix C. Proof of Lemma 3.2; Appendix D. Proof of Lemma 3.3; Bibliography; Back Cover