Cargando…

Handbook of Graphene Materials.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tiwari, Ashutosh
Otros Autores: Palys, Barbara
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1105958692
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 190621s2019 nju o 000 0 eng
040 |a AU@  |b eng  |e rda  |e pn  |c AU@  |d EBLCP  |d OCLCQ  |d BWN  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119469759  |q (electronic bk.) 
020 |a 1119469759 
020 |z 9781119469742 
029 0 |a AU@  |b 000065401677 
035 |a (OCoLC)1105958692 
050 4 |a TA455.G65  |b .H363 2019 
082 0 4 |a 620.115  |2 23 
049 |a UAMI 
100 1 |a Tiwari, Ashutosh. 
245 1 0 |a Handbook of Graphene Materials. 
264 1 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (829 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Biosensors -- 1 Graphene-Based Biosensors: Fundamental Concepts, Outline of Utility, and Future Scopes -- 1.1 Introduction -- 1.2 Graphene Fabrication -- 1.3 Fundamental Concepts -- 1.3.1 Electrical Properties -- 1.3.1.1 Basic Electrochemistry of Graphene -- 1.3.1.2 Direct Electrochemistry of Enzymes -- 1.3.2 Optical Properties -- 1.4 Outline of Utility -- 1.4.1 Glucose Biosensor -- 1.4.2 NADH Biosensor -- 1.4.3 Hemoglobin Biosensor -- 1.4.4 Cholesterol Biosensor -- 1.4.5 Dopamine Biosensor -- 1.5 Future Scopes and Conclusions -- References -- 2 Graphene for Electrochemical Biosensors in Biomedical Applications -- 2.1 Introduction -- 2.2 Graphene for Electrochemical Sensing -- 2.3 Graphene for Biomedical Device -- 2.4 Graphene for Biological Imaging -- 2.5 Conclusions -- References -- 3 Graphene-Based Biosensors in Agro-Defense: Food Safety and Animal Health Diagnosis -- 3.1 Introduction to Graphene -- 3.1.1 Properties of Graphene -- 3.1.1.1 Electrical Properties -- 3.1.1.2 Mechanical Strength -- 3.1.1.3 Optical Properties -- 3.1.2 Synthesis of Graphene -- 3.1.2.1 Mechanical Exfoliation -- 3.1.2.2 Epitaxial Growth on Silicon Carbide -- 3.1.2.3 Epitaxial Growth on Metal Substrate -- 3.1.2.4 Graphite Oxide Reduction -- 3.1.2.5 Growth from Metal-Carbon Melts -- 3.1.2.6 Unzipping of Nanotubes -- 3.1.3 Application of Graphene in Sensor Development -- 3.1.4 Graphene Field-Effect Transistor -- 3.2 Importance of Biosensors for Agro-Defense -- 3.3 Graphene-Based Biosensors for Food Safety -- 3.3.1 Detection of Pesticides -- 3.3.2 Biosensors for Mycotoxin -- 3.3.3 Biosensors for Allergens -- 3.3.4 Biosensors for Bisphenol-A -- 3.3.5 Biosensors for Microbial Pathogens -- 3.4 Graphene-Based Biosensors for Animal Safety -- 3.4.1 Biosensors for Animal Diseases. 
505 8 |a 3.4.2 Biosensors for Metabolic Disorders -- 3.4.3 Biosensors for Progesterone -- 3.4.4 Biosensors for Influenza -- 3.5 Summary -- References -- 4 Trends and Frontiers in Graphene-Based (Bio)sensors for Pesticides Electroanalysis -- 4.1 Graphene Electrochemical Properties -- 4.2 Graphene-Based Sensors -- 4.2.1 Sensors Based on Electrode Modification with Graphene -- 4.2.2 Sensors Based on Graphene Combined with Other (Nano)materials -- 4.3 Graphene-Based Biosensors -- 4.3.1 Enzymatic Biosensors -- 4.3.1.1 Enzymatic Biosensors Based on Electrode Modification with Graphene -- 4.3.1.2 Enzymatic Biosensors Based on Graphene Combined with Other (Nano)materials -- 4.3.2 Graphene-Based Immunosensors -- 4.4 Concluding Remarks -- Acknowledgments -- References -- 5 Graphene-Based Biosensors: Design, Construction, and Validation. Toward a Nanotechnological Tool for the Rapid in-Field Detection of Food Toxicants and Environmental Pollutants -- 5.1 Introduction -- 5.2 Graphene Fabrication -- 5.3 Graphene Functionalization -- 5.4 Graphene-Based Biosensors -- 5.4.1 Bio-Field-Effect Transistors -- 5.4.2 Impedimetric Biosensors -- 5.4.3 Surface Plasmon Resonance Biosensors -- 5.4.4 Fluorescent Biosensors -- 5.4.5 Electrochemical Biosensors -- 5.5 Technology Evaluation -- 5.6 Concluding Remarks -- References -- 6 Application of Porous Graphene in Electrochemical Sensors and Biosensors -- 6.1 Introduction -- 6.2 Electrochemical Sensors and Biosensors Based on PGR -- 6.2.1 PGR -- 6.2.1.1 CVD-Templated PGR -- 6.2.1.2 PGR Prepared by Template Method -- 6.2.1.3 Template-Free PGR -- 6.2.2 Heteroatom-Doped PGR for Electrochemical Sensor -- 6.2.2.1 Nitrogen-Doped PGR -- 6.2.2.2 Phosphorus-Doped PGR -- 6.2.3 Biomolecules/PGR -- 6.2.3.1 GOD/PGR -- 6.2.3.2 Horseradish Peroxidase HRP/PGR -- 6.2.3.3 Antibody/PGR -- 6.2.4 Metallic Nanomaterials/PGR -- 6.2.4.1 CVD-Grown PGR. 
505 8 |a 6.2.4.2 PGR Prepared by Template Method -- 6.2.4.3 GR Hydrogels or Aerogels -- 6.2.5 Noble Metal NPs/PGR -- 6.2.5.1 CVD-Grown PGR -- 6.2.5.2 PGR Prepared by Template Method -- 6.2.5.3 PGR Hydrogels or Aerogels -- 6.2.6 Redox Mediator/PGR -- 6.3 Outlook and Conclusion -- References -- 7 Reduced Graphene Oxide for Biosensing and Electrocatalytic Applications -- 7.1 Introduction -- 7.2 Methods of RGO Synthesis -- 7.2.1 Synthesis of Graphite Oxide -- 7.2.2 Chemical Reduction of Graphene Oxide -- 7.2.3 Hydrothermal Reduction -- 7.2.4 Photoreduction -- 7.2.5 Electrochemical Reduction -- 7.3 Characterization of GO and RGO -- 7.3.1 Chemical Composition: Infrared Spectra and XPS -- 7.3.2 Structural Aspects: Raman Spectra of GO and RGO -- 7.4 RGO in Biosensors and Biofuel Cells -- 7.5 Enzyme-Free Sensors: Composite Materials with RGO and Metal Nanoparticles -- 7.5.1 Electrochemical Sensors -- 7.5.2 Pseudoperoxidase Activity-Colorimetric Sensing -- 7.5.3 Fluorescence Sensors -- 7.5.4 SERS Sensors -- 7.6 3D Structures Based on RGO -- 7.6.1 Synthesis of the 3D RGO -- 7.6.2 Applications of RGO Hydrogels and Sponges -- 7.6.2.1 Supercapacitors -- 7.6.2.2 Drug Delivery -- 7.6.2.3 Sensing -- 7.7 Summary and Perspectives -- References -- 8 Recent Progress in the Graphene-Based Electrochemical Biosensors Development -- 8.1 Introduction -- 8.2 Graphene Forms for Electrochemical Biosensing -- 8.2.1 Graphene -- 8.2.1.1 Biomolecules in an Electrode Material -- 8.2.1.2 Biomolecules as a Target -- 8.2.1.3 Biomolecules in an Electrode Material and as a Target -- 8.2.2 Graphene Oxide -- 8.2.2.1 Biomolecules in an Electrode Material -- 8.2.2.2 Biomolecules as a Target -- 8.2.2.3 Biomolecules in an Electrode Material and as a Target -- 8.2.3 Reduced Graphene Oxide -- 8.2.3.1 Biomolecules in an Electrode Material -- 8.2.3.2 Biomolecules as a Target. 
505 8 |a 8.2.3.3 Biomolecules in an Electrode Material and as a Target -- 8.2.4 Graphene Quantum Dots -- 8.2.4.1 Biomolecules in an Electrode Material -- 8.2.4.2 Biomolecules as a Target -- 8.2.4.3 Biomolecules in an Electrode Material and as a Target -- 8.3 Summary -- Acknowledgments -- References -- 9 Electrochemical Biosensors Based on Green Synthesized Graphene and Graphene Nanocomposites -- 9.1 Introduction -- 9.2 Enzyme-Based Electrochemical Sensors for the Determination of Glucose Using Green Synthesized Graphene and Graphene Nanocomposites -- 9.2.1 Glucose Biosensor -- 9.2.2 Hydrogen Peroxide Biosensor -- 9.2.3 Phenol Biosensor -- 9.2.4 Acetylcholinesterase Biosensor -- 9.2.5 Lipid Biosensor -- 9.3 Electrochemical Genosensors Using Green Synthesized Graphene and Graphene Nanocomposite -- 9.3.1 Listeria monocytogenes -- 9.3.2 Vibrio parahaemolyticus -- 9.4 Electrochemical Aptasensor Using Green Synthesized Graphene and Graphene Nanocomposite Aptamers -- 9.4.1 Tumor Markers -- 9.4.2 Bacteria -- 9.4.3 Lysozyme -- 9.5 Electrochemical Immunosensor Using Green Synthesized Graphene and Graphene Nanocomposite -- 9.5.1 Tumor Marker -- 9.5.2 Bacteria -- 9.5.3 Virus -- 9.5.4 C-Reactive Protein -- 9.5.5 Cancer Cell -- 9.6 Lectin-Based Biosensor -- 9.6.1 Cancer Cell -- 9.6.2 Glycoprotein -- 9.7 Conclusion -- Acknowledgments -- References -- 10 Recent Biosensing Applications of Graphene-Based Nanomaterials -- 10.1 Introduction to Biosensors -- 10.2 Graphene, Its Variants, and Features for Biosensing Applications -- 10.3 Recent Most Biosensing Applications of Graphene and Its Variants -- 10.3.1 Detection of Diseases -- 10.3.2 Detection of Viruses -- 10.3.3 Detection of Microbes -- 10.3.4 Enzymatic Biosensors -- 10.3.5 Nonenzymatic or Catalytic Sensing -- 10.3.6 Detection of Toxins/Additives/Pesticides for Food and Environment -- 10.3.7 Detection of Polyphenols. 
505 8 |a 10.3.8 Detection of Hormones -- 10.3.9 Detection of Drugs -- 10.3.10 Detection of Heavy Metals -- 10.3.11 Detection of GM Foods -- 10.3.12 Detection of Glycoproteins -- 10.3.13 Detection of Cellular Measurements, Viability, Capture, etc. -- 10.3.14 Heterodyne Sensing -- 10.3.15 Theranostic Applications: Imaging, Drug Delivery, and Photodynamic Therapy -- 10.3.16 pH Sensors -- 10.4 Real-World Applications of Graphene-Based Biosensors -- 10.5 Conclusions and Future Prospects -- References -- 11 Graphene-Based Sensors: Applications in Electrochemical (Bio)sensing -- Abbreviations -- 11.1 Introduction -- 11.1.1 Why Apply Graphene-Based Materials in Electrochemical Sensing Devices? -- 11.2 Graphene and Graphene-Based Materials: Applications in Electrochemical Sensing and Biosensing -- 11.2.1 Graphene (G) -- 11.2.2 Graphene Oxide (GO) -- 11.2.3 Reduced Graphene Oxide (rGO) -- 11.2.4 Graphene Quantum Dots (GQDs), Graphene Oxide QDs (GOQDs), and Reduced Graphene Oxide QGs (rGOQDs) -- 11.3 Final Considerations -- References -- 12 Graphene-Based Fiber Optic Label-Free Biosensor -- 12.1 Introduction -- 12.2 Recent Advances of Fiber Optic Biosensors -- 12.3 Novel Configuration of Graphene-Fiber Optic Biosensor -- 12.3.1 Architecture of GO-LPG and Theory of Mode Coupling -- 12.3.2 Principle of GO-LPG Biosensing -- 12.4 Functionalization of GO-LPG Sensor -- 12.4.1 Fabrication of LPGs -- 12.4.2 Materials -- 12.4.3 Surface Modification and GO Deposition -- 12.4.4 Surface Morphological Characterization -- 12.5 GO-Based Fiber Optic Immunosensor -- 12.5.1 Enhanced RI Sensitivity with Thin GO Coating -- 12.5.2 Biofunctionalization of GO-dLPG -- 12.5.3 Label-Free Immunosensing of Antibody-Antigen Kinetic Interaction -- 12.5.4 Reusability of GO-dLPG Immunosensor -- 12.6 GO-Hemoglobin Biosensor -- 12.6.1 Transition of Mode Coupling with Thick GO Overlay. 
500 |a 12.6.2 Biosensing Detection System. 
588 0 |a Publisher supplied metadata and other sources 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Graphene. 
650 6 |a Graphène. 
650 7 |a Graphene  |2 fast 
700 1 |a Palys, Barbara. 
758 |i has work:  |a Handbook of Graphene Materials (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3BjrKGqQHR3pRR3Y4FMyd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Tiwari, Ashutosh.  |t Handbook of Graphene Materials.  |d Newark : John Wiley & Sons, Incorporated, ©2019  |z 9781119469742 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5789377  |z Texto completo 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5806893  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5789377 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5806893 
994 |a 92  |b IZTAP