Time Changes of the Brownian Motion.
In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0, 1]^n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0, 1]^n, density of the medium...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Providence :
American Mathematical Society,
2019.
|
Collection: | Memoirs of the American Mathematical Society ;
no. 1250. |
Sujets: | |
Accès en ligne: | Texto completo |
Résumé: | In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0, 1]^n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0, 1]^n, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such. |
---|---|
Description matérielle: | 1 online resource (130 pages) |
ISBN: | 1470452553 9781470452551 |