Cargando…

Extended states for the Schrödinger operator with quasi-periodic potential in dimension two /

The authors consider a Schrödinger operator H=-\Delta +V(\vec x) in dimension two with a quasi-periodic potential V(\vec x). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the follo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Karpeshina, Yulia E., 1956- (Autor), Shterenberg, Roman (Roman G.) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1239.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1096296267
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190410t20192019riu ob 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d UIU  |d EBLCP  |d OCLCF  |d AU@  |d COD  |d GZM  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
019 |a 1101194134 
020 |a 9781470450694  |q (ebook) 
020 |a 1470450690  |q (ebook) 
020 |z 9781470435431  |q (alk. paper) 
020 |z 1470435438  |q (alk. paper) 
029 1 |a AU@  |b 000065280509 
029 1 |a AU@  |b 000069424819 
035 |a (OCoLC)1096296267  |z (OCoLC)1101194134 
050 4 |a QC174.17.S3  |b K37 2019 
082 0 4 |a 530.12/4  |2 23 
049 |a UAMI 
100 1 |a Karpeshina, Yulia E.,  |d 1956-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjKcp9pf6WkqHRftRp36Dq 
245 1 0 |a Extended states for the Schrödinger operator with quasi-periodic potential in dimension two /  |c Yulia Karpeshina, Roman Shterenberg. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (v, 139 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 1239 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; Chapter 2. Preliminary Remarks; Chapter 3. Step I; 3.1. The Operator ⁽¹⁾; 3.2. Perturbation Formulas; 3.3. Geometric Considerations; 3.4. Isoenergetic Surface for the Operator ⁽¹⁾; 3.5. Preparation for Step II. Construction of the Second Nonresonant Set; Chapter 4. Step II; 4.1. The Operator ⁽²⁾. Perturbation Formulas; 4.2. Isoenergetic Surface for the Operator ⁽²⁾; 4.3. Preparation for Step III -- Geometric Part. Properties of the Quasiperiodic Lattice; 4.4. Preparation for Step III -- Analytic Part; Chapter 5. Step III 
505 8 |a 5.1. The Operator ⁽³⁾. Perturbation Formulas5.2. Isoenergetic Surface for the Operator ⁽³⁾; 5.3. Preparation for Step IV; Chapter 6. STEP IV; 6.1. The Operator ⁽⁴⁾. Perturbation Formulas; 6.2. Isoenergetic Surface for the Operator ⁽⁴⁾; Chapter 7. Induction; 7.1. Inductive formulas for _{ }; 7.2. Preparation for Step +1, ≥4; 7.3. The Operator ⁽ⁿ⁺¹⁾. Perturbation Formulas; 7.4. Isoenergetic Surface for the Operator ⁽ⁿ⁺¹⁾; Chapter 8. Isoenergetic Sets. Generalized Eigenfunctions of; 8.1. Construction of the Limit-Isoenergetic Set; 8.2. Generalized Eigenfunctions of 
505 8 |a Chapter 9. Proof of Absolute Continuity of the Spectrum9.1. The Operators _{ }( _{ }'), _{ }'⊂ _{ }; 9.2. Sets _{∞} and _{∞, }; 9.3. Projections ( _{∞, }); 9.4. Proof of Absolute Continuity; Chapter 10. Appendices; 10.1. Appendix 1. Proof of Lemma 3.12; 10.2. Appendix 2. Proof of Lemma 3.13; 10.3. Appendix 3; 10.4. Appendix 4; 10.5. Appendix 5; 10.6. Appendix 6; 10.7. Appendix 7; 10.8. Appendix 8. An Application of Bezout's Theorem; 10.9. Appendix 9. On the Proof of Geometric Lemmas Allowing to Deal with Clusters instead of Boxes; 10.10. Appendix 10 
505 8 |a Chapter 11. List of main notationsBibliography; Back Cover 
520 |a The authors consider a Schrödinger operator H=-\Delta +V(\vec x) in dimension two with a quasi-periodic potential V(\vec x). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves e^i\langle \vec \varkappa, \vec x\rangle in the high energy region. Second, the isoenergetic curves in the space of momenta \vec \varkappa corresponding to these eigenfunctions have the form of slightly distorted circles with holes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Schrödinger equation. 
650 6 |a Équation de Schrödinger. 
650 0 7 |a Schrödinger, Ecuación de  |2 embucm 
650 7 |a Schrödinger equation  |2 fast 
700 1 |a Shterenberg, Roman  |q (Roman G.),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjBFhhwhw6rpHxQprvtfC3 
758 |i has work:  |a Extended states for the Schrödinger operator with quasi-periodic potential in dimension two (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH7tvYpVTYRXCTDjGr8q6X  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version: Karpeshina, Yulia E., 1956-  |t Extended states for the Schrödinger operator with quasi-periodic potential in dimension two.  |d Providence, RI : American Mathematical Society, [2019]  |z 9781470435431  |w (DLC) 2019012338  |w (OCoLC)1079399367 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1239.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5770285  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445244 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5770285 
994 |a 92  |b IZTAP