Cargando…

Hands-On Artificial Intelligence for IoT : Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems.

The book will help you get well-versed with different techniques in Artificial Intelligence such as machine learning, deep learning, natural language processing and more to build smart IoT systems. By the end of the book, you will have practical knowledge on how to implement and manipulate text, aud...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kapoor, Amita
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1086025719
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190216s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d UKAHL  |d UX1  |d OCLCO  |d OCLCF  |d OCLCQ  |d UKEHC  |d ESU  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
020 |a 9781788832762 
020 |a 1788832760 
035 |a (OCoLC)1086025719 
050 4 |a TA347.A78  |b K37 2019 
082 0 4 |a 004.67 
049 |a UAMI 
100 1 |a Kapoor, Amita. 
245 1 0 |a Hands-On Artificial Intelligence for IoT :  |b Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (382 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Principles and Foundations of IoT and AI; What is IoT 101?; IoT reference model; IoT platforms; IoT verticals; Big data and IoT; Infusion of AI -- data science in IoT; Cross-industry standard process for data mining; AI platforms and IoT platforms; Tools used in this book; TensorFlow; Keras; Datasets; The combined cycle power plant dataset; Wine quality dataset; Air quality data; Summary; Chapter 2: Data Access and Distributed Processing for IoT; TXT format 
505 8 |a Using TXT files in PythonCSV format; Working with CSV files with the csv module; Working with CSV files with the pandas module; Working with CSV files with the NumPy module; XLSX format; Using OpenPyXl for XLSX files; Using pandas with XLSX files; Working with the JSON format; Using JSON files with the JSON module; JSON files with the pandas module; HDF5 format; Using HDF5 with PyTables; Using HDF5 with pandas; Using HDF5 with h5py; SQL data; The SQLite database engine; The MySQL database engine; NoSQL data; HDFS; Using hdfs3 with HDFS; Using PyArrow's filesystem interface for HDFS; Summary 
505 8 |a Chapter 3: Machine Learning for IoTML and IoT; Learning paradigms; Prediction using linear regression; Electrical power output prediction using regression; Logistic regression for classification; Cross-entropy loss function; Classifying wine using logistic regressor; Classification using support vector machines; Maximum margin hyperplane; Kernel trick; Classifying wine using SVM; Naive Bayes; Gaussian Naive Bayes for wine quality; Decision trees; Decision trees in scikit; Decision trees in action; Ensemble learning; Voting classifier; Bagging and pasting 
505 8 |a Improving your model -- tips and tricksFeature scaling to resolve uneven data scale; Overfitting; Regularization; Cross-validation; No Free Lunch theorem; Hyperparameter tuning and grid search; Summary; Chapter 4: Deep Learning for IoT; Deep learning 101; Deep learning-why now?; Artificial neuron; Modelling single neuron in TensorFlow; Multilayered perceptrons for regression and classification; The backpropagation algorithm; Energy output prediction using MLPs in TensorFlow; Wine quality classification using MLPs in TensorFlow; Convolutional neural networks; Different layers of CNN 
505 8 |a The convolution layerPooling layer; Some popular CNN model; LeNet to recognize handwritten digits; Recurrent neural networks; Long short-term memory; Gated recurrent unit; Autoencoders; Denoising autoencoders; Variational autoencoders; Summary; Chapter 5: Genetic Algorithms for IoT; Optimization; Deterministic and analytic methods; Gradient descent method; Newton-Raphson method; Natural optimization methods; Simulated annealing; Particle Swarm Optimization; Genetic algorithms; Introduction to genetic algorithms; The genetic algorithm; Crossover; Mutation; Pros and cons; Advantages 
500 |a Disadvantages 
520 |a The book will help you get well-versed with different techniques in Artificial Intelligence such as machine learning, deep learning, natural language processing and more to build smart IoT systems. By the end of the book, you will have practical knowledge on how to implement and manipulate text, audio, and speech data within the IoT system. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Internet of things. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Internet des objets. 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Internet of things  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Kapoor, Amita.  |t Hands-On Artificial Intelligence for IoT : Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781788836067 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5675583  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039650233 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5675583 
994 |a 92  |b IZTAP