Infrared Spectroscopy of Triatomics for Space Observation /
"This book is dedicated to the application of the different theoretical models described in Volume 1 to identify the near-, mid- and far-infrared spectra of linear and nonlinear triatomic molecules in gaseous phase or subjected to environmental constraints, useful for the study of environmental...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Other Authors: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Hoboken, NJ :
John Wiley and Sons, Inc. : Wiley-ISTE,
2019.
|
Series: | Dahoo, Pierre Richard. Infrared spectroscopy set ;
v. 2. |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- Cover; Half-Title Page; Title Page; Copyright Page; Contents; Foreword; Preface; 1. Symmetry of Triatomic Molecules; 1.1. Introduction; 1.2. The symmetry group of the Hamiltonian of a triatomic molecule; 1.3. Symmetry of the nonlinear triatomic molecule (O3); 1.3.1. The nonlinear asymmetric molecule O3 (16O16O18O (668)); 1.3.2. The nonlinear symmetric molecule O3 (16O16O16O (666)); 1.3.3. Symmetry of eigenstates of a nonlinear molecule; 1.4. Symmetry of the linear triatomic molecule (CO2); 1.4.1. The linear asymmetric molecule CO2 (16O12C18O (628))
- 1.4.2. The linear symmetric molecule CO2 (16O12C16O (626))1.5. Selection rules; 1.5.1. Symmetry of the eigenstates of a triatomic molecule taking into account the nuclei spins; 2. Energy Levels of Triatomic Molecules in Gaseous Phase; 2.1. Introduction; 2.2. Vibrational-rotational movements of an isolated molecule; 2.3. Vibrational movements of an isolated triatomic molecule; 2.3.1. Nonlinear triatomic molecules; 2.3.2. Linear triatomic molecules; 2.3.3. Introduction of the perturbative Hamiltonians H1, H2, H3 ... ; 2.3.4. Transitions between two vibrational levels: selection rules
- 2.4. Rotational movement of an isolated rigid molecule2.4.1. Linear triatomic molecules; 2.4.2. Symmetric top molecule; 2.4.3. Nonlinear triatomic molecules; 2.4.4. Transitions between rotational levels; 2.5. Vibrational-rotational energy levels of an isolated triatomic molecule; 2.6. Rovibrational transitions: selection rules; 2.6.1. Dipole moment in terms of normal coordinates; 2.7. Appendices; 2.7.1. Rotational matrix; 2.7.2. Perturbative Hamiltonians of vibration and vibration-rotation coupling; 2.7.3. Components of the angular momentum →J; 2.7.4. Rotational Hamiltonian of a symmetric top
- 2.7.5. Elements of the rotational matrix2.7.6. Vibrational anharmonic constants; 3. Clathrate Nano-Cages; 3.1. Introduction; 3.2. Clathrate structures; 3.3. Inclusion model of a triatomic molecule in a clathrate nano-cage; 3.3.1. Inclusion model; 3.3.2. Interaction potential energy; 3.4. Thermodynamic model of clathrates; 3.4.1. Occupation fractions and Langmuir constants; 3.4.2. Determination of the Langmuir constants; 3.4.3. Application to triatomic molecules; 3.5. Infrared spectrum of a triatomic in clathrate matrix; 3.5.1. Infrared absorption coefficient
- 3.5.2. Hamiltonian of the system and separation of movements3.5.3. Vibrational motions; 3.5.4. Orientational motion; 3.5.5. Translational motion; 3.5.6. Bar spectra; 3.6. Application to the CO2 molecule; 3.6.1. Vibrational motions; 3.6.2. Orientational motion; 3.6.3. Translational motion; 3.6.4. Bar spectra; 3.7. Appendices; 3.7.1. Non-zero orientation matrix elements used to calculate the corrections to first-order perturbation energies; 3.7.2. Correction to eigenenergies of the orientation Hamiltonian