Cargando…

Machine Learning with Apache Spark Quick Start Guide : Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib.

Chapter 3: Artificial Intelligence and Machine Learning; Artificial intelligence; Machine learning; Supervised learning; Unsupervised learning; Reinforced learning; Deep learning; Natural neuron; Artificial neuron; Weights; Activation function; Heaviside step function; Sigmoid function; Hyperbolic t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Quddus, Jillur
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1080999777
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190105s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d YDX  |d CHVBK  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d NLW  |d UKMGB  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC229316  |2 bnb 
016 7 |a 019205861  |2 Uk 
019 |a 1080588437 
020 |a 9781789349375 
020 |a 1789349370 
020 |z 9781789346565 
029 1 |a AU@  |b 000065066020 
029 1 |a CHNEW  |b 001039958 
029 1 |a CHVBK  |b 559036221 
029 1 |a UKMGB  |b 019205861 
035 |a (OCoLC)1080999777  |z (OCoLC)1080588437 
037 |a 9781789349375  |b Packt Publishing 
050 4 |a QA76.9.D343  |b .Q338 2018 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Quddus, Jillur. 
245 1 0 |a Machine Learning with Apache Spark Quick Start Guide :  |b Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (233 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: The Big Data Ecosystem; A brief history of data; Vertical scaling; Master/slave architecture; Sharding; Data processing and analysis; Data becomes big; Big data ecosystem; Horizontal scaling; Distributed systems; Distributed data stores; Distributed filesystems; Distributed databases; NoSQL databases; Document databases; Columnar databases; Key-value databases; Graph databases; CAP theorem; Distributed search engines; Distributed processing; MapReduce; Apache Spark 
505 8 |a RDDs, DataFrames, and datasetsRDDs; DataFrames; Datasets; Jobs, stages, and tasks; Job; Stage; Tasks; Distributed messaging; Distributed streaming; Distributed ledgers; Artificial intelligence and machine learning; Cloud computing platforms; Data insights platform; Reference logical architecture; Data sources layer; Ingestion layer; Persistent data storage layer; Data processing layer; Serving data storage layer; Data intelligence layer; Unified access layer; Data insights and reporting layer; Platform governance, management, and administration; Open source implementation; Summary 
505 8 |a Chapter 2: Setting Up a Local Development EnvironmentCentOS Linux 7 virtual machine; Java SE Development Kit 8; Scala 2.11; Anaconda 5 with Python 3; Basic conda commands; Additional Python packages; Jupyter Notebook; Starting Jupyter Notebook; Troubleshooting Jupyter Notebook; Apache Spark 2.3; Spark binaries; Local working directories; Spark configuration; Spark properties; Environmental variables; Standalone master server; Spark worker node; PySpark and Jupyter Notebook; Apache Kafka 2.0; Kafka binaries; Local working directories; Kafka configuration; Start the Kafka server; Testing Kafka 
520 |a Chapter 3: Artificial Intelligence and Machine Learning; Artificial intelligence; Machine learning; Supervised learning; Unsupervised learning; Reinforced learning; Deep learning; Natural neuron; Artificial neuron; Weights; Activation function; Heaviside step function; Sigmoid function; Hyperbolic tangent function; Artificial neural network; Single-layer perceptron; Multi-layer perceptron; NLP; Cognitive computing; Machine learning pipelines in Apache Spark; Summary; Chapter 4: Supervised Learning Using Apache Spark; Linear regression; Case study - predicting bike sharing demand 
505 8 |a Univariate linear regressionResiduals; Root mean square error; R-squared; Univariate linear regression in Apache Spark; Multivariate linear regression; Correlation; Multivariate linear regression in Apache Spark; Logistic regression; Threshold value; Confusion matrix; Receiver operator characteristic curve; Area under the ROC curve; Case study -- predicting breast cancer; Classification and Regression Trees; Case study -- predicting political affiliation; Random forests; K-Fold cross validation; Summary; Chapter 5: Unsupervised Learning Using Apache Spark; Clustering; Euclidean distance 
500 |a Hierarchical clustering 
520 |a Machine Learning with Apache Spark provides a hands-on introduction to Big Data and Advanced Analytics. In a world driven by mass data creation and consumption, this book combines the latest scalable technologies with advanced analytical algorithms using real-world use-cases in order to derive actionable insights from Big Data in real-time. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 6 |a Apprentissage automatique. 
650 6 |a Données volumineuses. 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Data mining.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Quddus, Jillur.  |t Machine Learning with Apache Spark Quick Start Guide : Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789346565 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5626693  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35804857 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5626693 
938 |a YBP Library Services  |b YANK  |n 15914136 
994 |a 92  |b IZTAP