|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1080999777 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190105s2018 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d MERUC
|d YDX
|d CHVBK
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d UKAHL
|d OCLCQ
|d NLW
|d UKMGB
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC229316
|2 bnb
|
016 |
7 |
|
|a 019205861
|2 Uk
|
019 |
|
|
|a 1080588437
|
020 |
|
|
|a 9781789349375
|
020 |
|
|
|a 1789349370
|
020 |
|
|
|z 9781789346565
|
029 |
1 |
|
|a AU@
|b 000065066020
|
029 |
1 |
|
|a CHNEW
|b 001039958
|
029 |
1 |
|
|a CHVBK
|b 559036221
|
029 |
1 |
|
|a UKMGB
|b 019205861
|
035 |
|
|
|a (OCoLC)1080999777
|z (OCoLC)1080588437
|
037 |
|
|
|a 9781789349375
|b Packt Publishing
|
050 |
|
4 |
|a QA76.9.D343
|b .Q338 2018
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Quddus, Jillur.
|
245 |
1 |
0 |
|a Machine Learning with Apache Spark Quick Start Guide :
|b Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing Ltd,
|c 2018.
|
300 |
|
|
|a 1 online resource (233 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: The Big Data Ecosystem; A brief history of data; Vertical scaling; Master/slave architecture; Sharding; Data processing and analysis; Data becomes big; Big data ecosystem; Horizontal scaling; Distributed systems; Distributed data stores; Distributed filesystems; Distributed databases; NoSQL databases; Document databases; Columnar databases; Key-value databases; Graph databases; CAP theorem; Distributed search engines; Distributed processing; MapReduce; Apache Spark
|
505 |
8 |
|
|a RDDs, DataFrames, and datasetsRDDs; DataFrames; Datasets; Jobs, stages, and tasks; Job; Stage; Tasks; Distributed messaging; Distributed streaming; Distributed ledgers; Artificial intelligence and machine learning; Cloud computing platforms; Data insights platform; Reference logical architecture; Data sources layer; Ingestion layer; Persistent data storage layer; Data processing layer; Serving data storage layer; Data intelligence layer; Unified access layer; Data insights and reporting layer; Platform governance, management, and administration; Open source implementation; Summary
|
505 |
8 |
|
|a Chapter 2: Setting Up a Local Development EnvironmentCentOS Linux 7 virtual machine; Java SE Development Kit 8; Scala 2.11; Anaconda 5 with Python 3; Basic conda commands; Additional Python packages; Jupyter Notebook; Starting Jupyter Notebook; Troubleshooting Jupyter Notebook; Apache Spark 2.3; Spark binaries; Local working directories; Spark configuration; Spark properties; Environmental variables; Standalone master server; Spark worker node; PySpark and Jupyter Notebook; Apache Kafka 2.0; Kafka binaries; Local working directories; Kafka configuration; Start the Kafka server; Testing Kafka
|
520 |
|
|
|a Chapter 3: Artificial Intelligence and Machine Learning; Artificial intelligence; Machine learning; Supervised learning; Unsupervised learning; Reinforced learning; Deep learning; Natural neuron; Artificial neuron; Weights; Activation function; Heaviside step function; Sigmoid function; Hyperbolic tangent function; Artificial neural network; Single-layer perceptron; Multi-layer perceptron; NLP; Cognitive computing; Machine learning pipelines in Apache Spark; Summary; Chapter 4: Supervised Learning Using Apache Spark; Linear regression; Case study - predicting bike sharing demand
|
505 |
8 |
|
|a Univariate linear regressionResiduals; Root mean square error; R-squared; Univariate linear regression in Apache Spark; Multivariate linear regression; Correlation; Multivariate linear regression in Apache Spark; Logistic regression; Threshold value; Confusion matrix; Receiver operator characteristic curve; Area under the ROC curve; Case study -- predicting breast cancer; Classification and Regression Trees; Case study -- predicting political affiliation; Random forests; K-Fold cross validation; Summary; Chapter 5: Unsupervised Learning Using Apache Spark; Clustering; Euclidean distance
|
500 |
|
|
|a Hierarchical clustering
|
520 |
|
|
|a Machine Learning with Apache Spark provides a hands-on introduction to Big Data and Advanced Analytics. In a world driven by mass data creation and consumption, this book combines the latest scalable technologies with advanced analytical algorithms using real-world use-cases in order to derive actionable insights from Big Data in real-time.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
630 |
0 |
0 |
|a Spark (Electronic resource : Apache Software Foundation)
|
630 |
0 |
7 |
|a Spark (Electronic resource : Apache Software Foundation)
|2 fast
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Big data.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
7 |
|a Data capture & analysis.
|2 bicssc
|
650 |
|
7 |
|a Artificial intelligence.
|2 bicssc
|
650 |
|
7 |
|a Data mining.
|2 bicssc
|
650 |
|
7 |
|a Computers
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Data Processing.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Database Management
|x Data Mining.
|2 bisacsh
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Quddus, Jillur.
|t Machine Learning with Apache Spark Quick Start Guide : Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib.
|d Birmingham : Packt Publishing Ltd, ©2018
|z 9781789346565
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5626693
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35804857
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5626693
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15914136
|
994 |
|
|
|a 92
|b IZTAP
|