Cargando…

Deep Learning with Pytorch Quick Start Guide : Learn to Train and Deploy Neural Network Models in Python.

PyTorch is extremely powerful and yet easy to learn. It provides advanced features such as supporting multiprocessor, distributed and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Julian, David
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1080997913
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 190105s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d N$T  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d UKMGB  |d OCLCO  |d TMA  |d OCLCQ 
015 |a GBC3F7116  |2 bnb 
016 7 |a 019205851  |2 Uk 
020 |a 1789539730 
020 |a 9781789539738  |q (electronic bk.) 
020 |z 9781789534092 
029 1 |a AU@  |b 000065065815 
029 1 |a CHNEW  |b 001039947 
029 1 |a CHVBK  |b 559036116 
029 1 |a AU@  |b 000071301012 
029 1 |a UKMGB  |b 019205851 
035 |a (OCoLC)1080997913 
037 |a 9781789539738  |b Packt Publishing 
050 4 |a QA76.87 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Julian, David. 
245 1 0 |a Deep Learning with Pytorch Quick Start Guide :  |b Learn to Train and Deploy Neural Network Models in Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (150 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introduction to PyTorch; What is PyTorch?; Installing PyTorch; Digital Ocean; Tunneling in to IPython; Amazon Web Services (AWS); Basic PyTorch operations; Default value initialization; Converting between tensors and NumPy arrays; Slicing and indexing and reshaping; In place operations; Loading data; PyTorch dataset loaders; Displaying an image; DataLoader; Creating a custom dataset; Transforms; ImageFolder; Concatenating datasets; Summary; Chapter 2: Deep Learning Fundamentals 
505 8 |a Approaches to machine learningLearning tasks; Unsupervised learning; Clustering; Principle component analysis; Reinforcement learning; Supervised learning; Classification; Evaluating classifiers; Features; Handling text and categories; Models; Linear algebra review; Linear models; Gradient descent; Multiple features; The normal equation; Logistic regression; Nonlinear models; Artificial neural networks; The perceptron; Summary; Chapter 3: Computational Graphs and Linear Models; autograd; Computational graphs; Linear models; Linear regression in PyTorch; Saving models; Logistic regression 
505 8 |a Activation functions in PyTorchMulti-class classification example; Summary; Chapter 4: Convolutional Networks; Hyper-parameters and multilayered networks; Benchmarking models; Convolutional networks; A single convolutional layer; Multiple kernels; Multiple convolutional layers; Pooling layers; Building a single-layer CNN; Building a multiple-layer CNN; Batch normalization; Summary; Chapter 5: Other NN Architectures; Introduction to recurrent networks; Recurrent artificial neurons ; Implementing a recurrent network; Long short-term memory networks; Implementing an LSTM 
505 8 |a Building a language model with a gated recurrent unitSummary; Chapter 6: Getting the Most out of PyTorch; Multiprocessor and distributed environments; Using a GPU; Distributed environments; torch.distributed; torch.multiprocessing; Optimization techniques; Optimizer algorithms; Learning rate scheduler; Parameter groups; Pretrained models; Implementing a pretrained model; Summary; Other Books You May Enjoy; Index 
520 |a PyTorch is extremely powerful and yet easy to learn. It provides advanced features such as supporting multiprocessor, distributed and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Machine Learning 
650 2 |a Artificial Intelligence 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Julian, David.  |t Deep Learning with Pytorch Quick Start Guide : Learn to Train and Deploy Neural Network Models in Python.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789534092 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5626636  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35804867 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5626636 
938 |a EBSCOhost  |b EBSC  |n 1991439 
994 |a 92  |b IZTAP