Cargando…

Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation.

This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smith, Patrick D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1078554004
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181208s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d YDX  |d OCLCQ  |d RDF  |d OCLCO  |d N$T  |d OCLCF  |d OCLCQ  |d LOY  |d NLW  |d OCLCO  |d UKMGB  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d TMA  |d OCLCL  |d OCLCQ 
015 |a GBC209304  |2 bnb 
016 7 |a 019121416  |2 Uk 
019 |a 1078431097 
020 |a 1788992261 
020 |a 9781788992268  |q (electronic bk.) 
020 |z 9781788991063  |q print 
029 1 |a AU@  |b 000065065633 
029 1 |a AU@  |b 000067114552 
029 1 |a UKMGB  |b 019121416 
029 1 |a AU@  |b 000070127718 
035 |a (OCoLC)1078554004  |z (OCoLC)1078431097 
037 |a 9781788992268  |b Packt Publishing 
050 4 |a Q335  |b .P387 2018eb 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Smith, Patrick D.,  |e author. 
245 1 0 |a Hands-On Artificial Intelligence for Beginners :  |b an Introduction to AI Concepts, Algorithms, and Their Implementation. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (349 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory 
505 8 |a Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch 
505 8 |a Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks 
505 8 |a Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation 
505 8 |a Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs 
500 |a Neural machine translation 
520 |a This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more. 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a Hands-On Artificial Intelligence for Beginners (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGYPdWXCV4wmgDcwG8PTgX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a D. Smith, Patrick.  |t Hands-On Artificial Intelligence for Beginners : An Introduction to AI Concepts, Algorithms, and Their Implementation.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788991063 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5607070  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5607070 
938 |a EBSCOhost  |b EBSC  |n 1947196 
938 |a YBP Library Services  |b YANK  |n 15873699 
994 |a 92  |b IZTAP