Cargando…

Social Media Data Mining and Analytics.

Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Written...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Szabo, Gabor
Otros Autores: Boykin, Oscar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Somerset : John Wiley & Sons, Incorporated, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1055049944
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180929s2018 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d RECBK  |d OCLCQ  |d COO  |d OCLCQ  |d VT2  |d TOH  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1156389164  |a 1192329071  |a 1240525269 
020 |a 9781118824900 
020 |a 1118824903 
020 |a 9781118824856 
020 |a 1118824857  |q (Trade Paper) 
024 3 |a 9781118824856 
029 1 |a AU@  |b 000067092463 
035 |a (OCoLC)1055049944  |z (OCoLC)1156389164  |z (OCoLC)1192329071  |z (OCoLC)1240525269 
037 |b 00028608 
050 4 |a HF5415.32 
082 0 4 |a 658.83402856312 
049 |a UAMI 
100 1 |a Szabo, Gabor. 
245 1 0 |a Social Media Data Mining and Analytics. 
260 |a Somerset :  |b John Wiley & Sons, Incorporated,  |c 2018. 
300 |a 1 online resource (355 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; Human Interactions Measured; Online Behavior Through Data Collection; What Types of Data Are Essential to Collect?; Asking and Answering Questions with Data; The Datasets Used in This Book; Wikipedia; Twitter; Stack Exchange; LiveJournal; Scientific Documents from Cora; Amazon Fine Food Reviews; MovieLens Movie Ratings; The Languages and Frameworks Used in This Book; Python; Scalding; System Requirements to Run the Examples; Overview of the Chapters; Online Repository for the Book; Chapter 1 Users: The Who of Social Media. 
505 8 |a Measuring Variations in User Behavior in WikipediaThe Diversity of User Activities; The Origin of the User Activity Distribution; The Consequences of the Power Law; The Long Tail in Human Activities; Long Tails Everywhere: The 80/20 Rule (p/q Rule); Online Behavior on Twitter; Retrieving Tweets for Users; Logarithmic Binning; User Activities on Twitter; Summary; Chapter 2 Networks: The How of Social Media; Types and Properties of Social Networks; When Users Create the Connections: Explicit Networks; Directed Versus Undirected Graphs; Node and Edge Properties; Weighted Graphs. 
505 8 |a Creating Graphs from Activities: Implicit NetworksVisualizing Networks; Degrees: The Winner Takes All; Counting the Number of Connections; The Long Tail in User Connections; Beyond the Idealized Network Model; Capturing Correlations: Triangles, Clustering, and Assortativity; Local Triangles and Clustering; Assortativity; Summary; Chapter 3 Temporal Processes: The When of Social Media; What Traditional Models Tell You About Events in Time; When Events Happen Uniformly in Time; Inter-Event Times; Comparing to a Memoryless Process; Autocorrelations; Deviations from Memorylessness. 
505 8 |a Periodicities in Time in User ActivitiesBursty Activities of Individuals; Correlations and Bursts; Reservoir Sampling; Forecasting Metrics in Time; Finding Trends; Finding Seasonality; Forecasting Time Series with ARIMA; The Autoregressive Part ("AR"); The Moving Average Part ("MA"); The Full ARIMA(p, d, q) Model; Summary; Chapter 4 Content: The What of Social Media; Defining Content: Focus on Text and Unstructured Data; Creating Features from Text: The Basics of Natural Language Processing; The Basic Statistics of Term Occurrences in Text; Using Content Features to Identify Topics. 
505 8 |a The Popularity of TopicsHow Diverse Are Individual Users' Interests?; Extracting Low-Dimensional Information from High-Dimensional Text; Topic Modeling; Unsupervised Topic Modeling; Supervised Topic Modeling; Relational Topic Modeling; Summary; Chapter 5 Processing Large Datasets; MapReduce: Structuring Parallel and Sequential Operations; Counting Words; Skew: The Curse of the Last Reducer; Multi-Stage MapReduce Flows; Fan-Out; Merging Data Streams; Joining Two Data Sources; Joining Against Small Datasets; Models of Large-Scale MapReduce; Patterns in MapReduce Programming. 
500 |a Static MapReduce Jobs. 
520 |a Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Written by Dr. Gabor Szabo, a Senior Data Scientist at Twitter, and Dr. Oscar Boykin, a Software Engineer at Twitter, Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Facebook, Pinterest, Wikipedia, Reddit, Flickr, Web hyperlinks, and other rich data sources. In it, you will learn: -The four key characteristics of online services-users, social networks, actions, and content -The full data discovery lifecycle-data extraction, storage, analysis, and visualization -How to work with code and extract data to create solutions -How to use Big Data to make accurate customer predictions Szabo and Boykin wrote this book to provide businesses with the competitive advantage they need to harness the rich data that is available from social media platforms. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Consumer profiling  |x Data processing. 
650 0 |a Data mining. 
650 0 |a Social media  |x Data processing. 
650 0 |a Business planning  |x Data processing. 
650 0 |a Consumer behavior  |x Forecasting. 
650 6 |a Profil des consommateurs  |x Informatique. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Médias sociaux  |x Informatique. 
650 6 |a Consommateurs  |x Comportement  |x Prévision. 
650 7 |a COMPUTERS  |x Databases  |x Data Warehousing.  |2 bisacsh 
650 7 |a Business planning  |x Data processing  |2 fast 
650 7 |a Consumer behavior  |x Forecasting  |2 fast 
650 7 |a Data mining  |2 fast 
700 1 |a Boykin, Oscar. 
776 0 8 |i Print version:  |a Szabo, Gabor.  |t Social Media Data Mining and Analytics.  |d Somerset : John Wiley & Sons, Incorporated, ©2018  |z 9781118824856 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5520247  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5520247 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00737141 
994 |a 92  |b IZTAP