Sustainable food waste-to-energy systems /
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources....
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Academic Press,
2018.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Acknowledgment; Chapter 1: Introduction; Abstract; Chapter 2: Waste Resources in the Food Supply Chain; Abstract; 2.1 Introduction; 2.2 Global Perspective; 2.3 National Perspectives; 2.4 Assessment of State and Region-Specific Food Waste Resources; 2.5 Conclusions; Chapter 3: Conventional Food Waste Management Methods; Abstract; 3.1 Introduction; 3.2 Food Donation; 3.3 Animal Feed Production; 3.4 Composting; 3.5 Wastewater Treatment; 3.6 Incineration; 3.7 Landfilling; 3.8 Conclusions
- Chapter 4: Sustainable Waste-to-Energy Technologies: Anaerobic DigestionAbstract; Acknowledgments; 4.1 Introduction; 4.2 Anaerobic Digestion Process; 4.3 Performance of Anaerobic Digestion Systems; 4.4 Process Stability; 4.5 Anaerobic Codigestion; 4.6 Biogas Utilization; 4.7 Future Perspective and Research Needs; Chapter 5: Sustainable Waste-to-Energy Technologies: Fermentation; Abstract; 5.1 Introduction; 5.2 Bioethanol From Food Waste; 5.3 Ethanol Production Process Description; 5.4 Biobutanol From Food Waste; 5.5 Biohydrogen From Food Waste Fermentation
- 5.6 Future Perspective and Research Needs5.7 Conclusions; Chapter 6: Sustainable Waste-to-Energy Technologies: Transesterification; Abstract; 6.1 Introduction; 6.2 Potential Feedstocks for Biodiesel Production; 6.3 Transesterification of Waste Cooking Oil (WCO); 6.4 Uses of Biodiesel; 6.5 Utilization of By-product Glycerol; 6.6 Future Perspective and Research Needs; 6.7 Conclusions; Chapter 7: Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems; Abstract; 7.1 Introduction; 7.2 Theoretical Background and Performance Indicators
- 7.3 Energy Recovery From Food Industry Wastes Using BESs7.4 Limitations and Challenges of BESs; 7.5 Future Perspective and Research Needs; 7.6 Conclusions; Chapter 8: Sustainable Waste-to-Energy Technologies: Gasification and Pyrolysis; Abstract; 8.1 Introduction; 8.2 Coupling Food Waste With Suitable Conversion Technologies; 8.3 Thermochemical Conversion of Source-Specific Food Waste and Residues; 8.4 Future Perspective and Research Needs; 8.5 Conclusions; Chapter 9: Sustainable Waste-to-Energy Technologies: Hydrothermal Liquefaction; Abstract; 9.1 Introduction
- 9.2 Liquefaction Technologies and Conversion Mechanisms9.3 Hydrothermal Liquefaction of Source-Specific Food Wastes and Residues; 9.4 Future Perspectives and Research Needs; 9.5 Conclusions; Chapter 10: Environmental Aspects of Food Waste-to-Energy Conversion; Abstract; 10.1 Introduction; 10.2 LCA Methodology and Key Assumptions; 10.3 Life Cycle Impacts of Food Waste-to-Energy Conversion; 10.4 Comparison of Technologies; 10.5 Conclusions; Chapter 11: Economic Aspects of Food Waste-to-Energy System Deployment; Abstract; 11.1 Introduction; 11.2 Project Feasibility Considerations