Cargando…

Hands-On Intelligent Agents with OpenAI Gym : Your Guide to Developing AI Agents Using Deep Reinforcement Learning.

Walks through the hands-on process of building intelligent agents from the basics and all the way up to solving complex problems including playing Atari games and driving a car autonomously in the CARLA simulator. Discusses various learning environments and how to transform real-world problems into...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Palanisamy, Praveen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1048817965
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180818s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d OCLCQ  |d LVT  |d OCLCF  |d UKAHL  |d OCLCQ  |d UX1  |d K6U  |d OCLCO  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1048105964  |a 1055261198  |a 1175626107 
020 |a 9781788835138 
020 |a 1788835131 
020 |a 9781788836579 
020 |a 178883657X  |q (Trade Paper) 
024 3 |a 9781788836579 
029 1 |a AU@  |b 000066230248 
035 |a (OCoLC)1048817965  |z (OCoLC)1048105964  |z (OCoLC)1055261198  |z (OCoLC)1175626107 
037 |a B09513  |b 01201872 
050 4 |a Q336 .P353 2018 
082 0 4 |a 006.302855133 
049 |a UAMI 
100 1 |a Palanisamy, Praveen. 
245 1 0 |a Hands-On Intelligent Agents with OpenAI Gym :  |b Your Guide to Developing AI Agents Using Deep Reinforcement Learning. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (246 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Introduction to Intelligent Agents and Learning Environments; What is an intelligent agent?; Learning environments; What is OpenAI Gym?; Understanding the features of OpenAI Gym; Simple environment interface; Comparability and reproducibility; Ability to monitor progress; What can you do with the OpenAI Gym toolkit?; Creating your first OpenAI Gym environment; Creating and visualizing a new Gym environment; Summary. 
505 8 |a Chapter 2: Reinforcement Learning and Deep Reinforcement LearningWhat is reinforcement learning?; Understanding what AI means and what's in it in an intuitive way; Supervised learning; Unsupervised learning; Reinforcement learning; Practical reinforcement learning; Agent; Rewards; Environment; State; Model; Value function; State-value function; Action-value function; Policy; Markov Decision Process; Planning with dynamic programming; Monte Carlo learning and temporal difference learning; SARSA and Q-learning; Deep reinforcement learning. 
505 8 |a Practical applications of reinforcement and deep reinforcement learning algorithmsSummary; Chapter 3: Getting Started with OpenAI Gym and Deep Reinforcement Learning; Code repository, setup, and configuration; Prerequisites; Creating the conda environment; Minimal install -- the quick and easy way; Complete install of OpenAI Gym learning environments; Instructions for Ubuntu ; Instructions for macOS; MuJoCo installation; Completing the OpenAI Gym setup; Installing tools and libraries needed for deep reinforcement learning; Installing prerequisite system packages. 
505 8 |a Installing Compute Unified Device Architecture (CUDA)Installing PyTorch; Summary; Chapter 4: Exploring the Gym and its Features; Exploring the list of environments and nomenclature; Nomenclature; Exploring the Gym environments; Understanding the Gym interface; Spaces in the Gym; Summary; Chapter 5: Implementing your First Learning Agent -- Solving the Mountain Car problem; Understanding the Mountain Car problem; The Mountain Car problem and environment; Implementing a Q-learning agent from scratch; Revisiting Q-learning; Implementing a Q-learning agent using Python and NumPy. 
505 8 |a Defining the hyperparametersImplementing the Q_Learner class's __init__ method; Implementing the Q_Learner class's discretize method; Implementing the Q_Learner's get_action method; Implementing the Q_learner class's learn method; Full Q_Learner class implementation; Training the reinforcement learning agent at the Gym; Testing and recording the performance of the agent; A simple and complete Q-Learner implementation for solving the Mountain Car problem; Summary; Chapter 6: Implementing an Intelligent Agent for Optimal Control using Deep Q-Learning; Improving the Q-learning agent. 
500 |a Using neural networks to approximate Q-functions. 
520 |a Walks through the hands-on process of building intelligent agents from the basics and all the way up to solving complex problems including playing Atari games and driving a car autonomously in the CARLA simulator. Discusses various learning environments and how to transform real-world problems into learning environments and solve using the agents. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Application software  |x Development. 
650 0 |a Artificial intelligence  |x Data processing. 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Intelligence artificielle  |x Informatique. 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Artificial intelligence  |x Data processing  |2 fast 
758 |i has work:  |a Hands-on intelligent agents with OpenAI Gym (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCY9XWDBQQ4p7cMfdmfHYXH  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Palanisamy, Praveen.  |t Hands-On Intelligent Agents with OpenAI Gym : Your Guide to Developing AI Agents Using Deep Reinforcement Learning.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788836579 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5485023  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0037629800 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5485023 
938 |a YBP Library Services  |b YANK  |n 15625721 
994 |a 92  |b IZTAP