Cargando…

Hands-On Ensemble Learning with R : a Beginner's Guide to Combining the Power of Machine Learning Algorithms Using Ensemble Techniques.

Chapter 8: Ensemble Diagnostics; Technical requirements; What is ensemble diagnostics?; Ensemble diversity; Numeric prediction; Class prediction; Pairwise measure; Disagreement measure; Yule's or Q-statistic; Correlation coefficient measure; Cohen's statistic; Double-fault measure; Interra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tattar, Prabhanjan Narayanachar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Chapter 8: Ensemble Diagnostics; Technical requirements; What is ensemble diagnostics?; Ensemble diversity; Numeric prediction; Class prediction; Pairwise measure; Disagreement measure; Yule's or Q-statistic; Correlation coefficient measure; Cohen's statistic; Double-fault measure; Interrating agreement; Entropy measure; Kohavi-Wolpert measure; Disagreement measure for ensemble; Measurement of interrater agreement; Summary; Chapter 9: Ensembling Regression Models; Technical requirements; Pre-processing the housing data; Visualization and variable reduction; Variable clustering.
This book introduces you to the concept of ensemble learning and demonstrates how different machine learning algorithms can be combined to build efficient machine learning models. Use R to implement the popular trilogy of ensemble techniques, i.e. bagging, random forest and boosting, to build faster and more accurate machine learning models.
Notas:Regression models.
Descripción Física:1 online resource (376 pages)
ISBN:9781788629171
1788629175
9781788624145
1788624149