Cargando…

Natural Language Processing and Computational Linguistics : a Practical Guide to Text Analysis with Python, Gensim, SpaCy, and Keras.

Discover how you can perform your own modern text analysis, to make predictions, create inferences, and gain insights about the data around you today. Learn how to harness the powerful Python ecosystem and tools such as spaCy and Gensim to perform natural language processing, and computational lingu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Srinivasa-Desikan, Bhargav
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1045001572
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180721s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d NLE  |d CHVBK  |d OCLCO  |d OCLCQ  |d OCLCO  |d LVT  |d OCLCF  |d UKAHL  |d C6I  |d OCLCQ  |d LOY  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1175623369 
020 |a 9781788837033 
020 |a 1788837037 
020 |a 9781788838535 
020 |a 178883853X  |q (Trade Paper) 
024 3 |a 9781788838535 
029 1 |a AU@  |b 000066233044 
029 1 |a CHNEW  |b 001023889 
029 1 |a CHVBK  |b 530323451 
035 |a (OCoLC)1045001572  |z (OCoLC)1175623369 
037 |a B09470  |b 01201872 
050 4 |a QA76.9.N38  |b .S656 2018eb 
082 0 4 |a 006.35 
049 |a UAMI 
100 1 |a Srinivasa-Desikan, Bhargav. 
245 1 0 |a Natural Language Processing and Computational Linguistics :  |b a Practical Guide to Text Analysis with Python, Gensim, SpaCy, and Keras. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (298 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: What is Text Analysis?; What is text analysis?; Where's the data at?; Garbage in, garbage out; Why should you do text analysis?; Summary; References; Chapter 2: Python Tips for Text Analysis; Why Python?; Text manipulation in Python; Summary; References; Chapter 3: spaCy's Language Models; spaCy; Installation; Troubleshooting; Language models; Installing language models; Installation -- how and why?; Basic preprocessing with language models; Tokenizing text; Part-of-speech (POS) -- tagging. 
505 8 |a Named entity recognitionRule-based matching; Preprocessing; Summary; References; Chapter 4: Gensim -- Vectorizing Text and Transformations and n-grams; Introducing Gensim; Vectors and why we need them; Bag-of-words; TF-IDF; Other representations; Vector transformations in Gensim; n-grams and some more preprocessing; Summary; References; Chapter 5: POS-Tagging and Its Applications; What is POS-tagging?; POS-tagging in Python; POS-tagging with spaCy; Training our own POS-taggers; POS-tagging code examples; Summary; References; Chapter 6: NER-Tagging and Its Applications; What is NER-tagging? 
505 8 |a NER-tagging in PythonNER-tagging with spaCy; Training our own NER-taggers; NER-tagging examples and visualization; Summary; References; Chapter 7: Dependency Parsing; Dependency parsing; Dependency parsing in Python; Dependency parsing with spaCy; Training our dependency parsers; Summary; References; Chapter 8: Topic Models; What are topic models?; Topic models in Gensim; Latent Dirichlet allocation; Latent semantic indexing; Hierarchical Dirichlet process; Dynamic topic models; Topic models in scikit-learn; Summary; References; Chapter 9: Advanced Topic Modeling; Advanced training tips. 
505 8 |a Exploring documentsTopic coherence and evaluating topic models; Visualizing topic models; Summary; References; Chapter 10: Clustering and Classifying Text; Clustering text; Starting clustering; K-means; Hierarchical clustering; Classifying text; Summary; References; Chapter 11: Similarity Queries and Summarization; Similarity metrics; Similarity queries; Summarizing text; Summary; References; Chapter 12: Word2Vec, Doc2Vec, and Gensim; Word2Vec; Using Word2Vec with Gensim; Doc2Vec; Other word embeddings; GloVe; FastText; WordRank; Varembed; Poincare; Summary; References. 
505 8 |a Chapter 13: Deep Learning for TextDeep learning; Deep learning for text (and more); Generating text; Summary; References; Chapter 14: Keras and spaCy for Deep Learning; Keras and spaCy; Classification with Keras; Classification with spaCy; Summary; References; Chapter 15: Sentiment Analysis and ChatBots; Sentiment analysis; Reddit for mining data; Twitter for mining data; ChatBots; Summary; References; Other Books You May Enjoy; Index. 
520 |a Discover how you can perform your own modern text analysis, to make predictions, create inferences, and gain insights about the data around you today. Learn how to harness the powerful Python ecosystem and tools such as spaCy and Gensim to perform natural language processing, and computational linguistics algorithms. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Natural language processing (Computer science) 
650 0 |a Computational linguistics. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 2 |a Natural Language Processing 
650 2 |a Machine Learning 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Linguistique informatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a computational linguistics.  |2 aat 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Computational linguistics  |2 fast 
758 |i has work:  |a Natural language processing and computational linguistics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmjrwmmGvRybD4wxXkX7d  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Srinivasa-Desikan, Bhargav.  |t Natural Language Processing and Computational Linguistics : A Practical Guide to Text Analysis with Python, Gensim, SpaCy, and Keras.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788838535 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5446034  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0037023390 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5446034 
994 |a 92  |b IZTAP