Tensor products and regularity properties of Cuntz semigroups /
The Cuntz semigroup of a C^*-algebra is an important invariant in the structure and classification theory of C^*-algebras. It captures more information than K-theory but is often more delicate to handle. The authors systematically study the lattice and category theoretic aspects of Cuntz semigroups....
| Clasificación: | Libro Electrónico |
|---|---|
| Autores principales: | , , |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Providence, RI :
American Mathematical Society,
[2018]
|
| Colección: | Memoirs of the American Mathematical Society ;
no. 1199. |
| Temas: | |
| Acceso en línea: | Texto completo |
| Sumario: | The Cuntz semigroup of a C^*-algebra is an important invariant in the structure and classification theory of C^*-algebras. It captures more information than K-theory but is often more delicate to handle. The authors systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C^*-algebra A, its (concrete) Cuntz semigroup \mathrm{Cu}(A) is an object in the category \mathrm{Cu} of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, the authors call the latter \mathrm. |
|---|---|
| Notas: | "January 2018, volume 251, number 1199 (sixth of 6 numbers)." |
| Descripción Física: | 1 online resource (viii, 191 pages) : illustrations |
| Bibliografía: | Includes bibliographical references (pages 181-185) and indexes. |
| ISBN: | 1470442825 9781470442828 |
| ISSN: | 0065-9266 ; |


