Cargando…

Nonsmooth differential geometry : an approach tailored for spaces with Ricci curvature bounded from below /

"We discuss in which sense general metric measure spaces possess a first order differential structure. Building on this, we then see that on spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting to define Hessian, covariant/exterior derivatives and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gigli, Nicola (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1196.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1019875179
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180118t20182017riua ob 000 0 eng d
010 |a  2017054243 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCF  |d GZM  |d YDX  |d COD  |d CUY  |d COO  |d EBLCP  |d IDB  |d N$T  |d NRC  |d OCLCQ  |d LEAUB  |d OCLCA  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
066 |c (S 
019 |a 1262690948 
020 |a 9781470442668  |q (electronic bk.) 
020 |a 1470442663  |q (electronic bk.) 
020 |z 9781470427658  |q (alk. paper) 
020 |z 1470427656  |q (alk. paper) 
035 |a (OCoLC)1019875179  |z (OCoLC)1262690948 
050 4 |a QA641  |b .G534 2018 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.3/6  |2 23 
049 |a UAMI 
100 1 |a Gigli, Nicola,  |e author. 
245 1 0 |a Nonsmooth differential geometry :  |b an approach tailored for spaces with Ricci curvature bounded from below /  |c Nicola Gigli. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2017 
300 |a 1 online resource (v, 161 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 251, number 1196 
588 0 |a Print version record. 
500 |a "January 2018, volume 251, number 1196 (third of 6 numbers)." 
504 |a Includes bibliographical references (pages 159-161). 
520 3 |a "We discuss in which sense general metric measure spaces possess a first order differential structure. Building on this, we then see that on spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting to define Hessian, covariant/exterior derivatives and Ricci curvature."--Page v 
505 0 0 |6 880-01  |t Introduction  |t Chapter 1. The machinery of $L^p(\mm)$-normed modules  |t Chapter 2. First order differential structure of general metric measure spaces  |t Chapter 3. Second order differential structureof $\RCD (K, \infty)$ spaces. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Differential. 
650 0 |a Nonsmooth optimization. 
650 0 |a Spaces of constant curvature. 
650 6 |a Géométrie différentielle. 
650 6 |a Optimisation non différentiable. 
650 6 |a Espaces à courbure constante. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometría diferencial  |2 embne 
650 7 |a Optimización matemática  |2 embne 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Nonsmooth optimization  |2 fast 
650 7 |a Spaces of constant curvature  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Nonsmooth differential geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFBj6Jj3cCtCRHWkTfhH3P  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Gigli, Nicola.  |t Nonsmooth differential geometry.  |d Providence, RI : American Mathematical Society, 2018  |z 9781470427658  |w (DLC) 2017054243  |w (OCoLC)1019854671 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1196. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5346257  |z Texto completo 
880 8 |6 505-01/(S  |a 3.3.3.1. Some auxiliary Sobolev spaces3.3.3.2. Statement and proofs of calculus rules; 3.4. Covariant derivative; 3.4.1. The Sobolev space ^{1,2}_{ }(\X); 3.4.2. Calculus rules; 3.4.3. Second order differentiation formula; 3.4.4. Connection Laplacian and heat flow of vector fields; 3.5. Exterior derivative; 3.5.1. The Sobolev space ^{1,2}_{}(Λ^{ } *\X); 3.5.2. de Rham cohomology and Hodge theorem; 3.6. Ricci curvature; Bibliography; Back Cover. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445143 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5346257 
938 |a YBP Library Services  |b YANK  |n 15214459 
938 |a EBSCOhost  |b EBSC  |n 1729302 
994 |a 92  |b IZTAP