|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1005657938 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170928t20172017riua ob 001 0 eng d |
010 |
|
|
|a 2017040912
|
040 |
|
|
|a CUY
|b eng
|e rda
|e pn
|c CUY
|d UIU
|d GZM
|d COO
|d OCLCF
|d COD
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCA
|d UKAHL
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d COO
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1162549290
|a 1262679532
|
020 |
|
|
|a 9781470441395
|q (online)
|
020 |
|
|
|a 147044139X
|q (online)
|
020 |
|
|
|z 9781470426040
|q (print)
|
020 |
|
|
|a 1470426048
|q (acid-free paper)
|
020 |
|
|
|a 9781470426040
|
029 |
1 |
|
|a AU@
|b 000069392773
|
035 |
|
|
|a (OCoLC)1005657938
|z (OCoLC)1162549290
|z (OCoLC)1262679532
|
050 |
|
4 |
|a QA212
|b .E77 2017
|
082 |
0 |
4 |
|a 512/.482
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ershov, Mikhail,
|d 1978-
|e author.
|
245 |
1 |
0 |
|a Property (T) for groups graded by root systems /
|c Mikhail Ershov, Andrei Jaikin-Zapirain, Martin Kassabov.
|
246 |
3 |
|
|a Property for groups graded by root systems
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (v, 135 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 249, number 1186
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 249, Number 1186 (seventh of 8 numbers), September 2017."
|
504 |
|
|
|a Includes bibliographical references (pages 133-134) and index.
|
505 |
0 |
|
|a Introduction -- Preliminaries -- Generalized spectral criterion -- Root Systems -- Property (T) for groups graded by root systems -- Reductions of root systems -- Steinberg groups over commutative rings -- Twisted Steinberg groups -- Application: Mother group with property (T) -- Estimating relative Kazhdan constants -- Appendix A: Relative property (T) for (\mathrm St_n(R)\ltimes R^n, R^n) -- Bibliography -- Index.
|
520 |
|
|
|a The authors introduce and study the class of groups graded by root systems. They prove that if \Phi is an irreducible classical root system of rank \geq 2 and G is a group graded by \Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \Phi of rank \geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\mathrm St}_{\Phi}(R) and the elementary Chevalley group \mathbb E_{\Phi}(R) have property (T).
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Root systems (Algebra)
|
650 |
|
6 |
|a Systèmes de racines (Algèbre)
|
650 |
|
7 |
|a Root systems (Algebra)
|2 fast
|
700 |
1 |
|
|a Jaikin-Zapirain, Andrei,
|e author.
|
700 |
1 |
|
|a Kassabov, Martin,
|d 1977-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjwTbjftdyTx9kj9cwFcbm
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Property (T) for groups graded by root systems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH4xDq6hkTX68fqKC43Rcd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Ershov, Mikhail, 1978-
|t Property (T) for groups graded by root systems.
|d Providence, Rhode Island : American Mathematical Society, [2017]
|z 9781470426040
|w (DLC) 2017040912
|w (OCoLC)990124854
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1186.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5110286
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445115
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5110286
|
994 |
|
|
|a 92
|b IZTAP
|