Cargando…

Property (T) for groups graded by root systems /

The authors introduce and study the class of groups graded by root systems. They prove that if \Phi is an irreducible classical root system of rank \geq 2 and G is a group graded by \Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ershov, Mikhail, 1978- (Autor), Jaikin-Zapirain, Andrei (Autor), Kassabov, Martin, 1977- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1186.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1005657938
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 170928t20172017riua ob 001 0 eng d
010 |a  2017040912 
040 |a CUY  |b eng  |e rda  |e pn  |c CUY  |d UIU  |d GZM  |d COO  |d OCLCF  |d COD  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCA  |d UKAHL  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d COO  |d OCLCO  |d OCLCL 
019 |a 1162549290  |a 1262679532 
020 |a 9781470441395  |q (online) 
020 |a 147044139X  |q (online) 
020 |z 9781470426040  |q (print) 
020 |a 1470426048  |q (acid-free paper) 
020 |a 9781470426040 
029 1 |a AU@  |b 000069392773 
035 |a (OCoLC)1005657938  |z (OCoLC)1162549290  |z (OCoLC)1262679532 
050 4 |a QA212  |b .E77 2017 
082 0 4 |a 512/.482  |2 23 
049 |a UAMI 
100 1 |a Ershov, Mikhail,  |d 1978-  |e author. 
245 1 0 |a Property (T) for groups graded by root systems /  |c Mikhail Ershov, Andrei Jaikin-Zapirain, Martin Kassabov. 
246 3 |a Property for groups graded by root systems 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (v, 135 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 249, number 1186 
588 0 |a Print version record. 
500 |a "Volume 249, Number 1186 (seventh of 8 numbers), September 2017." 
504 |a Includes bibliographical references (pages 133-134) and index. 
505 0 |a Introduction -- Preliminaries -- Generalized spectral criterion -- Root Systems -- Property (T) for groups graded by root systems -- Reductions of root systems -- Steinberg groups over commutative rings -- Twisted Steinberg groups -- Application: Mother group with property (T) -- Estimating relative Kazhdan constants -- Appendix A: Relative property (T) for (\mathrm St_n(R)\ltimes R^n, R^n) -- Bibliography -- Index. 
520 |a The authors introduce and study the class of groups graded by root systems. They prove that if \Phi is an irreducible classical root system of rank \geq 2 and G is a group graded by \Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \Phi of rank \geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\mathrm St}_{\Phi}(R) and the elementary Chevalley group \mathbb E_{\Phi}(R) have property (T). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Root systems (Algebra) 
650 6 |a Systèmes de racines (Algèbre) 
650 7 |a Root systems (Algebra)  |2 fast 
700 1 |a Jaikin-Zapirain, Andrei,  |e author. 
700 1 |a Kassabov, Martin,  |d 1977-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjwTbjftdyTx9kj9cwFcbm 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Property (T) for groups graded by root systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH4xDq6hkTX68fqKC43Rcd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ershov, Mikhail, 1978-  |t Property (T) for groups graded by root systems.  |d Providence, Rhode Island : American Mathematical Society, [2017]  |z 9781470426040  |w (DLC) 2017040912  |w (OCoLC)990124854 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1186. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5110286  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445115 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5110286 
994 |a 92  |b IZTAP