Around Langlands Correspondences.
This volume contains the proceedings of the international conference "Around Langlands Correspondences", held from June 17-20, 2015, at Université Paris Sud in Orsay, France. The Langlands correspondence (nowadays called the usual Langlands correspondence), conjectured by Robert Langlands...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2017.
|
Colección: | Contemporary Mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Contents; Preface; Change of weight theorem for pro- -Iwahori Hecke algebras; 1. Introduction; 2. Change of weight theorem; 3. Description of "compact induction" for pro- -Iwahori Hecke algebra; 4. Change of weight theorem for ℋ; 5. Relation with Satake transform; References; Conjectures about -adic groups and their noncommutative geometry; Introduction; 1. The local Langlands correspondence; 2. The smooth dual of a reductive -adic group; 3. Reduction to the supercuspidal case; 4. Topological K-theory; References; Introduction to the Rapid Decay property
- Overview of the situation1. Short historical survey and applications; 2. Basic definitions; 3. The case =\Z; 4. Equivalent definitions of property RD; References; A second adjoint theorem for \SL(2,ℝ); 1. Introduction; 2. Categories of \SF-representations; 3. Tempered representations; 4. Parabolic induction and restriction; 5. Frobenius reciprocity; 6. The second adjoint theorem; 7. Proof of the second adjoint theorem; 8. Fourier transforms and intertwiners; References; A functoriality principle for blocks of -adic linear groups; 1. Main statements
- 1.1. Functoriality for \oQl-blocks of groups of \GL-type1.2. Functoriality for \oZl-blocks of groups of \GL-type; 1.3. More general groups; 2. Details and proofs; 2.1. The centralizer and its dual -groups; 2.2. Unipotent factorizations of a _{ }-parameter; 2.3. Restriction of scalars; 2.4. Groups of \GL-type; References; Poids de Serre dans la conjecture de Breuil-Mézard; Introduction; 0. Notations; 1. Conjecture de Breuil-Mézard; 1.1. Côté galoisien; 1.2. Côté automorphe; 1.3. Énoncés, interprétations et cas connus; 1.4. Méthode de calcul des multiplicités intrinsèques.
- 2. Poids de Serre d'une représentation irréductible de dimension 22.1. Rappels : congruences définissant \D(\rhobar); 2.2. Explicitation des formules génériques; 2.3. Formules non génériques et poids de Serre modifiés; 2.4. Multiplicité combinatoire; 3. Poids de Serre d'un type modéré; 4. Anneaux de déformations, variétés de Kisin et poids modifiés : exemples; 4.1. En degré =2; 4.2. En degré =3; Bibliographie; Affinoids in Lubin-Tate surfaces with exponential full level two; Introduction; 1. Lubin-Tate space and its formal model; 2. Affinoid in Lubin-Tate space; 3. Group action.
- 4. On middle cohomology of the surfaceAcknowledgment; References; An automorphic variant of a conjecture of Deligne; Introduction; Basic notation; 1. Motives and the Deligne conjecture; 2. The automorphic variant; References; Paquets d'Arthur des groupes classiques complexes; 1. Introduction; 2. Notations et généralités sur les groupes complexes et leurs représentations; 3. Paramètres de Langlands et d'Arthur; 4. \GL_{ }; 5. Les groupes classiques et leurs représentations. Paquets d'Arthur; 6. Réduction au cas unipotent de bonne parité; 7. Description des paquets unipotents (Barbasch-Vogan).