|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn993440488 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170711t20172017riua ob 000 0 eng d |
010 |
|
|
|a 2017014982
|
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d GZM
|d YDX
|d EBLCP
|d COO
|d IDB
|d COD
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCA
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1262690955
|
020 |
|
|
|a 9781470440589
|q (online)
|
020 |
|
|
|a 147044058X
|q (online)
|
020 |
|
|
|z 9781470425371
|q (alk. paper)
|
020 |
|
|
|z 1470425378
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062342788
|
035 |
|
|
|a (OCoLC)993440488
|z (OCoLC)1262690955
|
050 |
|
4 |
|a QA251.3
|b .B87 2017
|
082 |
0 |
4 |
|a 512/.44
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Burban, Igor,
|d 1977-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjKWWmVmhW8QhYRr8DD44q
|
245 |
1 |
0 |
|a Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /
|c Igor Burban, Yuriy Drozd.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (xiv, 114 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 248, number 1178
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 248, number 1178 (fourth of 5 numbers), July 2017."
|
504 |
|
|
|a Includes bibliographical references (pages 111-114).
|
505 |
0 |
|
|a Cover; Title page; Introduction, motivation and historical remarks; Chapter 1. Generalities on maximal Cohen-Macaulay modules; 1.1. Maximal Cohen-Macaulay modules over surface singularities; 1.2. On the category \CM^{ }(\rA); Chapter 2. Category of triples in dimension one; Chapter 3. Main construction; Chapter 4. Serre quotients and proof of Main Theorem; Chapter 5. Singularities obtained by gluing cyclic quotient singularities; 5.1. Non-isolated surface singularities obtained by gluing normal rings; 5.2. Generalities about cyclic quotient singularities.
|
505 |
8 |
|
|a 5.3. Degenerate cusps and their basic properties5.4. Irreducible degenerate cusps; 5.5. Other cases of degenerate cusps which are complete intersections; Chapter 6. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(²+ ³- ); Chapter 7. Representations of decorated bunches of chains-I; 7.1. Notation; 7.2. Bimodule problems; 7.3. Definition of a decorated bunch of chains; 7.4. Matrix description of the category \Rep(\dX); 7.5. Strings and Bands; 7.6. Idea of the proof; 7.7. Decorated Kronecker problem; Chapter 8. Maximal Cohen-Macaulay modules over degenerate cusps-I.
|
505 |
8 |
|
|a 8.1. Maximal Cohen-Macaulay modules on cyclic quotient surface singularities8.2. Matrix problem for degenerate cusps; 8.3. Reconstruction procedure; 8.4. Cohen-Macaulay representation type and tameness of degenerate cusps; Chapter 9. Maximal Cohen-Macaulay modules over degenerate cusps-II; 9.1. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(); 9.2. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(,); 9.3. Degenerate cusp \kk\llbracket, \rrbracket/(,); Chapter 10. Schreyer's question.
|
505 |
8 |
|
|a Chapter 11. Remarks on rings of discrete and tame CM-representation type11.1. Non-reduced curve singularities; 11.2. Maximal Cohen-Macaulay modules over the ring ̃ ((1,0)); 11.3. Other surface singularities of discrete and tame CM-representation type; 11.4. On deformations of certain non-isolated surface singularities; Chapter 12. Representations of decorated bunches of chains-II; 12.1. Decorated conjugation problem; 12.2. Some preparatory results from linear algebra; 12.3. Reduction to the decorated chessboard problem; 12.4. Reduction procedure for the decorated chessboard problem.
|
505 |
8 |
|
|a 12.5. Indecomposable representations of a decorated chessboard12.6. Proof of the Classification Theorem; References; Back Cover.
|
520 |
|
|
|a In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \mathbb{k}[[x, y, z]]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singulari.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cohen-Macaulay modules.
|
650 |
|
0 |
|a Modules (Algebra)
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
0 |
|a Matrices.
|
650 |
|
6 |
|a Modules de Cohen-Macaulay.
|
650 |
|
6 |
|a Modules (Algèbre)
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
6 |
|a Matrices.
|
650 |
|
7 |
|a Cohen-Macaulay modules
|2 fast
|
650 |
|
7 |
|a Matrices
|2 fast
|
650 |
|
7 |
|a Modules (Algebra)
|2 fast
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|
700 |
1 |
|
|a Drozd, Yurij A.,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
776 |
0 |
8 |
|i Print version:
|z 9781470425371
|w (DLC) 2017014982
|w (OCoLC)981907996
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1178.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4940244
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445095
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4940244
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14744568
|
994 |
|
|
|a 92
|b IZTAP
|