Cargando…

Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /

In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Burban, Igor, 1977- (Autor), Drozd, Yurij A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1178.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn993440488
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 170711t20172017riua ob 000 0 eng d
010 |a  2017014982 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d GZM  |d YDX  |d EBLCP  |d COO  |d IDB  |d COD  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1262690955 
020 |a 9781470440589  |q (online) 
020 |a 147044058X  |q (online) 
020 |z 9781470425371  |q (alk. paper) 
020 |z 1470425378  |q (alk. paper) 
029 1 |a AU@  |b 000062342788 
035 |a (OCoLC)993440488  |z (OCoLC)1262690955 
050 4 |a QA251.3  |b .B87 2017 
082 0 4 |a 512/.44  |2 23 
049 |a UAMI 
100 1 |a Burban, Igor,  |d 1977-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjKWWmVmhW8QhYRr8DD44q 
245 1 0 |a Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /  |c Igor Burban, Yuriy Drozd. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (xiv, 114 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 248, number 1178 
588 0 |a Print version record. 
500 |a "Volume 248, number 1178 (fourth of 5 numbers), July 2017." 
504 |a Includes bibliographical references (pages 111-114). 
505 0 |a Cover; Title page; Introduction, motivation and historical remarks; Chapter 1. Generalities on maximal Cohen-Macaulay modules; 1.1. Maximal Cohen-Macaulay modules over surface singularities; 1.2. On the category \CM^{ }(\rA); Chapter 2. Category of triples in dimension one; Chapter 3. Main construction; Chapter 4. Serre quotients and proof of Main Theorem; Chapter 5. Singularities obtained by gluing cyclic quotient singularities; 5.1. Non-isolated surface singularities obtained by gluing normal rings; 5.2. Generalities about cyclic quotient singularities. 
505 8 |a 5.3. Degenerate cusps and their basic properties5.4. Irreducible degenerate cusps; 5.5. Other cases of degenerate cusps which are complete intersections; Chapter 6. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(²+ ³- ); Chapter 7. Representations of decorated bunches of chains-I; 7.1. Notation; 7.2. Bimodule problems; 7.3. Definition of a decorated bunch of chains; 7.4. Matrix description of the category \Rep(\dX); 7.5. Strings and Bands; 7.6. Idea of the proof; 7.7. Decorated Kronecker problem; Chapter 8. Maximal Cohen-Macaulay modules over degenerate cusps-I. 
505 8 |a 8.1. Maximal Cohen-Macaulay modules on cyclic quotient surface singularities8.2. Matrix problem for degenerate cusps; 8.3. Reconstruction procedure; 8.4. Cohen-Macaulay representation type and tameness of degenerate cusps; Chapter 9. Maximal Cohen-Macaulay modules over degenerate cusps-II; 9.1. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(); 9.2. Maximal Cohen-Macaulay modules over \kk\llbracket, \rrbracket/(,); 9.3. Degenerate cusp \kk\llbracket, \rrbracket/(,); Chapter 10. Schreyer's question. 
505 8 |a Chapter 11. Remarks on rings of discrete and tame CM-representation type11.1. Non-reduced curve singularities; 11.2. Maximal Cohen-Macaulay modules over the ring ̃ ((1,0)); 11.3. Other surface singularities of discrete and tame CM-representation type; 11.4. On deformations of certain non-isolated surface singularities; Chapter 12. Representations of decorated bunches of chains-II; 12.1. Decorated conjugation problem; 12.2. Some preparatory results from linear algebra; 12.3. Reduction to the decorated chessboard problem; 12.4. Reduction procedure for the decorated chessboard problem. 
505 8 |a 12.5. Indecomposable representations of a decorated chessboard12.6. Proof of the Classification Theorem; References; Back Cover. 
520 |a In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \mathbb{k}[[x, y, z]]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singulari. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Cohen-Macaulay modules. 
650 0 |a Modules (Algebra) 
650 0 |a Singularities (Mathematics) 
650 0 |a Matrices. 
650 6 |a Modules de Cohen-Macaulay. 
650 6 |a Modules (Algèbre) 
650 6 |a Singularités (Mathématiques) 
650 6 |a Matrices. 
650 7 |a Cohen-Macaulay modules  |2 fast 
650 7 |a Matrices  |2 fast 
650 7 |a Modules (Algebra)  |2 fast 
650 7 |a Singularities (Mathematics)  |2 fast 
700 1 |a Drozd, Yurij A.,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
776 0 8 |i Print version:  |z 9781470425371  |w (DLC) 2017014982  |w (OCoLC)981907996 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1178. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4940244  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445095 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4940244 
938 |a YBP Library Services  |b YANK  |n 14744568 
994 |a 92  |b IZTAP