Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /
In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay m...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | , |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Providence, Rhode Island :
American Mathematical Society,
2017.
|
Collection: | Memoirs of the American Mathematical Society ;
no. 1178. |
Sujets: | |
Accès en ligne: | Texto completo |
Résumé: | In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \mathbb{k}[[x, y, z]]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singulari. |
---|---|
Description: | "Volume 248, number 1178 (fourth of 5 numbers), July 2017." |
Description matérielle: | 1 online resource (xiv, 114 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 111-114). |
ISBN: | 9781470440589 147044058X |
ISSN: | 0065-9266 ; |