Chargement en cours…

Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /

In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay m...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteurs principaux: Burban, Igor, 1977- (Auteur), Drozd, Yurij A. (Auteur)
Format: Électronique eBook
Langue:Inglés
Publié: Providence, Rhode Island : American Mathematical Society, 2017.
Collection:Memoirs of the American Mathematical Society ; no. 1178.
Sujets:
Accès en ligne:Texto completo
Description
Résumé:In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \mathbb{k}[[x, y, z]]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singulari.
Description:"Volume 248, number 1178 (fourth of 5 numbers), July 2017."
Description matérielle:1 online resource (xiv, 114 pages) : illustrations
Bibliographie:Includes bibliographical references (pages 111-114).
ISBN:9781470440589
147044058X
ISSN:0065-9266 ;