Cargando…

Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /

In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Burban, Igor, 1977- (Autor), Drozd, Yurij A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1178.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \mathbb{k}[[x, y, z]]/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singulari.
Notas:"Volume 248, number 1178 (fourth of 5 numbers), July 2017."
Descripción Física:1 online resource (xiv, 114 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 111-114).
ISBN:9781470440589
147044058X
ISSN:0065-9266 ;