Moduli of double EPW-sextics /
The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...
| Cote: | Libro Electrónico |
|---|---|
| Auteur principal: | |
| Format: | Électronique eBook |
| Langue: | Inglés |
| Publié: |
Providence, Rhode Island :
American Mathematical Society,
2016.
|
| Collection: | Memoirs of the American Mathematical Society ;
no. 1136. |
| Sujets: | |
| Accès en ligne: | Texto completo |
Table des matières:
- Introduction
- Preliminaries
- One-parameter subgroups and stability
- Plane sextics and stability of lagrangians
- Lagrangians with large stabilizers
- Description of the GIT-boundary
- Boundary components meeting I in a subset of X[subscript W] [cup] {x, x[superscript v]}
- The remaining boundary components
- Appendix A. Elementary auxiliary results
- Appendix B. Tables.


