Cargando…

Thermofluid modeling for energy efficiency applications /

Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Khan, M. M. (Editor ), Hassan, Nur M. S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn932060034
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150416s2015 ne a ob 001 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d OCLCO  |d OCLCQ  |d OCLCF  |d EBLCP  |d MERUC  |d OCLCQ  |d CUY  |d ZCU  |d ICG  |d DKC  |d OCLCQ  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 932328780 
020 |a 9780128025895  |q (PDF ebook) 
020 |a 0128025891  |q (PDF ebook) 
020 |z 9780128023976  |q (hbk.) 
035 |a (OCoLC)932060034  |z (OCoLC)932328780 
037 |a 9780128025895  |b Ingram Content Group 
050 4 |a TA357  |b .K436 2016 
082 0 4 |a 620.106  |2 23 
049 |a UAMI 
245 0 0 |a Thermofluid modeling for energy efficiency applications /  |c edited by M.M.K. Khan, Nur M.S. Hassan. 
264 1 |a Amsterdam :  |b Academic Press,  |c 2015. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a CIP data; item not viewed. 
505 0 |a Front Cover; Thermofluid Modeling for Energy Efficiency Applications; Copyright Page; Contents; List of Contributors; Preface; 1 Performance Evaluation of Hybrid Earth Pipe Cooling with Horizontal Piping System; 1.1 Introduction; 1.2 Earth Pipe Cooling Technology; 1.3 Green Roof System; 1.4 Experimental Design and Measurement; 1.5 Model Description; 1.5.1 Modeling Equation; 1.5.2 Geometry of the Model; 1.5.3 Mesh Generation; 1.5.4 Solver Approach; 1.6 Results and Discussion; 1.7 Conclusion; Acknowledgments; References; 2 Thermal Efficiency Modeling in a Subtropical Data Center. 
505 8 |a 2.1 Introduction2.2 CFD Modeling of Data Center; 2.2.1 Simulation Approach; 2.2.2 Modeling Equations; 2.3 Data Center Description; 2.4 Results and Discussion; 2.4.1 Experimental; 2.4.2 Simulations Results; 2.4.2.1 Data Center Room and Rack Thermal Maps; 2.4.2.2 Static Pressure Map; 2.4.2.3 Air Flow Paths; 2.5 CRAC Performance; 2.6 Conclusions and Recommendations; Nomenclature; References; 3 Natural Convection Heat Transfer in the Partitioned Attic Space; 3.1 Introduction; 3.2 Problem Formulation; 3.3 Numerical Approach and Validation; 3.4 Results and Discussions. 
505 8 |a 3.4.1 Development of Coupled Thermal Boundary Layer3.4.2 Effect of Geometry Configuration; 3.4.3 Effect of Rayleigh Number; 3.5 Conclusions; References; 4 Application of Nanofluid in Heat Exchangers for Energy Savings; 4.1 Introduction; 4.2 Types of Nanoparticles and Nanofluid Preparation; 4.3 Application of Nanofluid in Heat Exchangers; 4.4 Physical Model and Boundary Values; 4.5 Governing Equations; 4.6 Thermal and Fluid Dynamic Analysis; 4.7 Thermophysical Properties of Nanofluid; 4.7.1 Thermal Conductivity; 4.7.2 Dynamic Viscosity; 4.7.3 Density; 4.7.4 Specific Heat; 4.8 Numerical Method. 
505 8 |a 4.9 Code Validation4.10 Grid Independence Test; 4.11 Results and Discussions; 4.11.1 Heat Transfer Coefficient for Different Volume Fraction of Nanofluid; 4.11.2 Heat Transfer Coefficient for Different Nanofluids at the Same Volume Fraction; 4.11.3 Pumping Power; 4.12 Case Study for a Typical Heat Exchanger; 4.13 Conclusions; Nomenclature; Greek symbols; Subscripts; Dimensionless parameter; References; 5 Effects of Perforation Geometry on the Heat Transfer Performance of Extended Surfaces; 5.1 Introduction; 5.2 Problem Description; 5.3 Governing Equations; 5.4 Numerical Model Formulation. 
505 8 |a 5.4.1 Geometric Configuration and Computational Procedure5.4.2 Validation of the Numerical Simulation; 5.5 Results and Discussions; 5.5.1 Nusselt Number Variation with the Reynolds Number; 5.5.2 Effects of Drag Force; 5.5.3 Heat Removal Rate at Various Reynolds Numbers; 5.6 Conclusions; References; 6 Numerical Study of Flow Through a Reducer for Scale Growth Suppression; 6.1 Introduction; 6.2 The Bayer Process; 6.2.1 Bayer Process Scaling; 6.3 Fundamentals of Scaling; 6.4 Particle Deposition Mechanisms; 6.5 Fluid Dynamics Analysis in Scale Growth and Suppression; 6.6 Target Model. 
504 |a Includes bibliographical references at the end of each chapters and index. 
520 |a Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case studies that demonstrate the value of thermofluid modeling and simulation as an integral part of the engineering process. Research problems and modeling solutions across a range of energy efficiency scenarios are presented by experts, helping users build a sustainable engineering knowledge base. The text offers novel examples of the use of computation fluid dynamics in relation to hot topics, including passive air cooling and thermal storage. It is a valuable resource for academics, engineers, and students undertaking research in thermal engineering. Includes contributions from experts in energy efficiency modeling across a range of engineering fields Places thermofluid modeling and simulation at the center of engineering design and development, with theory supported by detailed, real-life case studies Features hot topics in energy and sustainability engineering, including thermal storage and passive air cooling Provides a valuable resource for academics, engineers, and students undertaking research in thermal engineering. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fluid mechanics  |x Mathematical models. 
650 0 |a Thermodynamics. 
650 0 |a Sustainable engineering. 
650 6 |a Mécanique des fluides  |x Modèles mathématiques. 
650 6 |a Thermodynamique. 
650 6 |a Ingénierie durable. 
650 7 |a thermodynamics.  |2 aat 
650 7 |a Fluid mechanics  |x Mathematical models  |2 fast 
650 7 |a Sustainable engineering  |2 fast 
650 7 |a Thermodynamics  |2 fast 
700 1 |a Khan, M. M.,  |e editor. 
700 1 |a Hassan, Nur M. S.,  |e editor. 
758 |i has work:  |a Thermofluid modeling for energy efficiency applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH4ph7wVgcXD7xd4ttPd43  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version  |z 9780128023976 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4003586  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4003586 
994 |a 92  |b IZTAP