Higher moments of Banach space valued random variables /
We define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. We study both the projective and injective tensor products, and their relation. Moreover, in or...
Call Number: | Libro Electrónico |
---|---|
Main Authors: | , |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Providence, Rhode Island :
American Mathematical Society,
2015.
|
Series: | Memoirs of the American Mathematical Society ;
no. 1127. |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- Introduction
- Preliminaries
- Moments of Banach space valued random variables
- The approximation property
- Hilbert spaces
- L[superscript p]([mu])
- C(K)
- c₀(S)
- D[0, 1]
- Uniqueness and convergence
- Appendix A: The reproducing Hilbert space
- Appendix B: The Zolotarev distances
- Bibliography.