|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn910951158 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
150416t20152014riua ob 000 0 eng d |
040 |
|
|
|a UAB
|b eng
|e rda
|e pn
|c UAB
|d OCLCO
|d COD
|d UIU
|d COO
|d OCLCF
|d GZM
|d LLB
|d YDX
|d EBLCP
|d OCLCA
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 958353357
|a 1086569161
|a 1262668738
|
020 |
|
|
|a 9781470422806
|q (online)
|
020 |
|
|
|a 1470422808
|q (online)
|
020 |
|
|
|z 9781470410469
|q (alk. paper)
|
020 |
|
|
|z 147041046X
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069392247
|
035 |
|
|
|a (OCoLC)910951158
|z (OCoLC)958353357
|z (OCoLC)1086569161
|z (OCoLC)1262668738
|
050 |
|
4 |
|a QA154.3
|b .B87 2015
|
082 |
0 |
4 |
|a 512/.2
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Burness, Timothy C.,
|d 1979-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjqFhPq3GwjKCtg8gcwxj3
|
245 |
1 |
0 |
|a Irreducible almost simple subgroups of classical algebraic groups /
|c Timothy C. Burness, Soumaïa Ghandour, Claude Marion, Donna M. Testerman.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2015.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (v, 110 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v volume 236, number 1114
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 236, number 1114 (fourth of 6 numbers), July 2015."
|
504 |
|
|
|a Includes bibliographical references (pages 109-110).
|
520 |
|
|
|a Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p e"0 with natural module W. Let H be a closed subgroup of G and let V be a nontrivial p-restricted irreducible tensor indecomposable rational KG-module such that the restriction of V to H is irreducible. In this paper we classify the triples (G, H, V) of this form, where V = W, W* and H is a disconnected almost simple positive-dimensional closed subgroup of G acting irreducibly on W. Moreover, by combining this result with earlier work, we complete the classification of the irreducible triples (G, H, V) where G is a simple algebraic group over K, and H is a maximal closed subgroup of positive dimension
|
505 |
0 |
0 |
|t Chapter 1. Introduction
|t Chapter 2. Preliminaries
|t Chapter 3. The case $H^0 = A_m$
|t Chapter 4. The case $H^0=D_m$, $m \ge 5$
|t Chapter 5. The case $H^0=E_6$
|t Chapter 6. The case $H^0 = D_4$
|t Chapter 7. Proof of Theorem 5
|t Notation
|
546 |
|
|
|a Text in English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Algebra.
|
650 |
|
6 |
|a Algèbre.
|
650 |
|
7 |
|a algebra.
|2 aat
|
650 |
|
7 |
|a Algebra
|2 fast
|
700 |
1 |
|
|a Ghandour, Soumaia,
|d 1980-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjHbVT64Q76b9J3mtPWMj3
|
700 |
1 |
|
|a Marion, Claude,
|d 1982-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjH4C4fYVtf34mFyWp36yq
|
700 |
1 |
|
|a Testerman, Donna M.,
|d 1960-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJwtgMfhdBj8TcJTWrtBT3
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Irreducible almost simple subgroups of classical algebraic groups (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFpJmRqPmBk8tkQ49hKR4y
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Prrint version:
|a Burness, Timothy C., 1979-
|t Irreducible Almost Simple Subgroups of Classical Algebraic Groups.
|d Providence, RI : American Mathematical Society, 2015
|z 9781470410469
|w (DLC) 2015007756
|w (OCoLC)907060043
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1114.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832009
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444938
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4832009
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13155120
|
994 |
|
|
|a 92
|b IZTAP
|