Imprimitive irreducible modules for finite quasisimple groups /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 234, no. 1104 (fourth of 5 numbers) |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Acknowledgements
- Chapter 1. Introduction
- Chapter 2. Generalities
- 2.1. Comments on the notation
- 2.2. Conditions for primitivity
- 2.3. Some results on linear groups of small degree
- 2.4. Reduction modulo â?? and imprimitivity
- 2.5. A result on polynomials
- Chapter 3. Sporadic Groups and the Tits Group
- Chapter 4. Alternating Groups
- Chapter 5. Exceptional Schur Multipliers and Exceptional Isomorphisms
- 5.1. Description of the tables
- 5.2. The proofs
- Chapter 6. Groups of Lie type: Induction from non-parabolic subgroups6.1. Outline of the strategy
- 6.2. The classical groups of Lie type
- 6.3. The exceptional groups of Lie type
- Chapter 7. Groups of Lie type: Induction from parabolic subgroups
- 7.1. Harish-Chandra series
- 7.2. Lusztig series
- 7.3. Asymptotics
- Chapter 8. Groups of Lie type: char()=0
- 8.1. Some results on Weyl groups
- 8.2. Harish-Chandra series
- 8.3. Lusztig series
- Chapter 9. Classical groups: â?Ž ()=0
- 9.1. The groups
- 9.2. Harish-Chandra series
- 9.3. Lusztig series9.4. Examples for the restriction to commutator subgroups
- Chapter 10. Exceptional groups
- 10.1. The exceptional groups of type and
- 10.2. Explicit results on some exceptional groups
- Bibliography
- Back Cover