Loading…

Imprimitive irreducible modules for finite quasisimple groups /

Bibliographic Details
Call Number:Libro Electrónico
Main Authors: Hiss, G. (Author), Husen, William J. (Author), Magaard, Kay (Author)
Format: Electronic eBook
Language:Inglés
Published: Providence, Rhode Island : American Mathematical Society, 2014.
Series:Memoirs of the American Mathematical Society ; Volume 234, no. 1104 (fourth of 5 numbers)
Subjects:
Online Access:Texto completo
Table of Contents:
  • Cover
  • Title page
  • Acknowledgements
  • Chapter 1. Introduction
  • Chapter 2. Generalities
  • 2.1. Comments on the notation
  • 2.2. Conditions for primitivity
  • 2.3. Some results on linear groups of small degree
  • 2.4. Reduction modulo â?? and imprimitivity
  • 2.5. A result on polynomials
  • Chapter 3. Sporadic Groups and the Tits Group
  • Chapter 4. Alternating Groups
  • Chapter 5. Exceptional Schur Multipliers and Exceptional Isomorphisms
  • 5.1. Description of the tables
  • 5.2. The proofs
  • Chapter 6. Groups of Lie type: Induction from non-parabolic subgroups6.1. Outline of the strategy
  • 6.2. The classical groups of Lie type
  • 6.3. The exceptional groups of Lie type
  • Chapter 7. Groups of Lie type: Induction from parabolic subgroups
  • 7.1. Harish-Chandra series
  • 7.2. Lusztig series
  • 7.3. Asymptotics
  • Chapter 8. Groups of Lie type: char()=0
  • 8.1. Some results on Weyl groups
  • 8.2. Harish-Chandra series
  • 8.3. Lusztig series
  • Chapter 9. Classical groups: â?Ž ()=0
  • 9.1. The groups
  • 9.2. Harish-Chandra series
  • 9.3. Lusztig series9.4. Examples for the restriction to commutator subgroups
  • Chapter 10. Exceptional groups
  • 10.1. The exceptional groups of type and
  • 10.2. Explicit results on some exceptional groups
  • Bibliography
  • Back Cover