Geometric and spectral analysis /
Tabla de Contenidos:
- Cover
- Title page
- Contents
- Preface
- A New Proof of a Bismut-Zhang Formula for Some Class of Representations
- 1. Introduction
- 2. The idea of the proof
- 3. The Milnor metric and the Farber-Turaev torsion
- 4. The Ray-Singer norm of the Refined Analytic Torsion
- 5. The Determinant Line Bundle over the Space of Representations
- 6. The Bismut-Zhang theorem for some non-unitary representations
- References
- Tunneling, the Quillen Metric and Analytic Torsion for High Powers of a Holomorphic Line Bundle
- 1. Introduction
- ""2. Proofs of the main results""""3. Further remarks on tunneling and outlook""; ""References""; ""Simple Spectrum and Rayleigh Quotients""; ""1. Introduction""; ""2. The Conformal class""; ""3. The K�hler class""; ""Acknowledgments""; ""References""; ""Smooth and Singular K�hler�Einstein Metrics""; ""1. Introduction""; ""2. The \KE equation""; ""3. \K edge geometry""; ""4. Existence and non-existence""; ""5. Energy functionals""; ""6. The Ricci continuity method""; ""7. A priori estimates for Monge�Amp�re equations""; ""8. The asymptotically logarithmic world""
- 9. The logarithmic Calabi problemAcknowledgements
- References
- Complex -Manifolds
- 1. Introduction
- 2. Complex -structures
- 3. Holomorphic vector bundles
- 4. The boundary of a complex -manifold
- 5. Local invariants
- 6. Indicial complexes
- 7. Underlying CR complexes
- 8. Spectrum
- 9. Indicial cohomology
- Appendix A. Totally characteristic differential operators
- References
- Iterative Structures on Singular Manifolds
- Introduction
- 1. Manifolds with singularities of higher order
- 2. The cone algebra
- 3. The edge algebra4. Shapiro-Lopatinskij edge-ellipticity
- 5. Iterated Mellin quantisation
- 6. Toeplitz edge problems
- References
- The Fundamental Gap and One-Dimensional Collapse
- 1. Motivation and results
- 2. Collapsing triangular domains
- 3. Collapsing polygonal domains
- 4. The general case
- Acknowledgements
- References
- The Logarithmic Singularities of the Green Functions of the Conformal Powers of the Laplacian
- Introduction
- 1. The Heat Kernel of the Laplace Operator
- 2. The Bergman Kernel of a Strictly Pseudoconvex Domain
- 3. Ambient Metric and Conformal Powers of the Laplacian4. Local Conformal Invariants
- 5. Scattering Theory and Conformal Fractional Powers of the Laplacian
- 6. Green Functions of Elliptic Operators
- 7. Green Functions and Conformal Geometry
- 8. Proof of Theorem 7.3
- References
- A Symbolic Calculus for Fourier Integral Operators
- Introduction
- 1. Notation and definitions
- 2. Canonical transformations in *
- 3. Fourier integral operators
- 4. Symbolic calculus for FIOs
- References
- Strichartz Estimates on Exterior Polygonal Domains