Loading…

System level ESD co-design /

"Demystifies the concept of system-level ESD and details its difference from the conventional component level ESD design and testing. Describes the protection elements and designs and focuses on the "co-design", an optimization methodology to address both issues in the same design spa...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Duvvury, Charvaka, 1944-
Other Authors: Gossner, Harald
Format: Electronic eBook
Language:Inglés
Published: Hoboken : John Wiley and Sons, Inc., 2015.
Subjects:
Online Access:Texto completo
Table of Contents:
  • List of Contributors xiii
  • Preface xv
  • Acronyms xvii
  • About the Book xxi
  • 1 Introduction 1 Charvaka Duvvury
  • 1.1 Definition of Co-Design 1
  • 1.2 Overview of the Book 2
  • 1.3 Challenges of System Level ESD Protection 2
  • 1.4 Importance of System Level Protection 2
  • 1.5 Industry-Wide Perception 5
  • 1.6 Purpose and Motivation 8
  • 1.7 Organization and Approach 8
  • 1.8 Outcome for the Reader 12
  • Acknowledgments 12
  • References 12
  • 2 Component versus System Level ESD 14 Charvaka Duvvury and Harald Gossner
  • 2.1 ESD Threat in the Real World 14
  • 2.1.1 ESD Control 14
  • 2.1.2 ESD Failure Types 15
  • 2.1.3 ESD Protection Areas 16
  • 2.1.4 ESD Stress Models 17
  • 2.2 Component ESD Qualification 17
  • 2.2.1 Component ESD Tests 17
  • 2.2.2 ESD Levels for IC Production 18
  • 2.2.3 Implications for System Level ESD 20
  • 2.2.4 ESD Technology Roadmap 20
  • 2.3 System Level ESD Tests 21
  • 2.3.1 IEC 61000-4-2 22
  • 2.4 ISO 10605 29
  • 2.5 IEC 61000-4-5 31
  • 2.5.1 System Applications 32
  • 2.5.2 Misconceptions and Miscorrelation of Component and System Level Tests 35
  • 2.5.3 Hard Failures Due to IEC Testing 42
  • 2.6 Soft Failures Due to IEC Testing 42
  • Acknowledgments 43
  • References 43
  • 3 System Level Testing for ESD Susceptibility 46 Michael Hopkins
  • 3.1 Introduction 46
  • 3.2 Objectives of System Level Testing 47
  • 3.3 Compliance to ESD Standards 47
  • 3.3.1 Legal Compliance Requirements 47
  • 3.3.2 Compliance to Industry Requirements 48
  • 3.4 Testing for Product Reliability 48
  • 3.5 Standards Requirements for System Level Testing 49
  • 3.5.1 IEC 61000-4-2 49
  • 3.5.2 Automotive Standards for ESD 58
  • 3.5.3 Medical Standards for ESD 60
  • 3.5.4 Avionics Standards for ESD 61
  • 3.5.5 Military ESD Standards 61
  • 3.6 Using the IEC Simulator for Device Testing 62
  • 3.7 Cable Discharge (CDE) Testing 63
  • 3.7.1 Shielded Cables 65
  • 3.7.2 Unshielded Cables 65
  • 3.7.3 Modified Transmission Line Pulsers (TLP) for CDE Testing 66
  • 3.8 Evaluation of Test Results 67
  • 3.8.1 Hard Failure Evaluation 67
  • 3.8.2 Soft Failure Evaluation 67
  • 3.9 The Quick Fix vs Root Cause Determination 67
  • 3.10 Determining Root Cause of System Level ESD 68
  • 3.11 Reproducibility of System Level ESD Tests 70
  • Acknowledgments 72
  • References 72
  • 4 PCB/IC Co-Design Concepts for SEED 74 Harald Gossner and Charvaka Duvvury
  • 4.1 On-Chip System ESD Protection 74
  • 4.1.1 HBM and CDM vs IEC 74
  • 4.1.2 TLP Characterization 76
  • 4.1.3 TLP Correlation Issues 78
  • 4.2 Off-Chip ESD Protection 79
  • 4.3 Concept of PCB/IC Co-Design 82
  • 4.3.1 On-Chip IEC Protection Solutions 84
  • 4.4 Introduction to System Efficient ESD Design 84
  • 4.4.1 Design Methods for SEED 90
  • 4.4.2 Basic Simulations using SEED 91
  • 4.4.3 USB Design using SEED 94
  • 4.5 Characterization for Hard Failures 97
  • 4.6 Simulation of System Level ESD Discharge Paths 98
  • 4.6.1 Simulation Approach 98
  • 4.6.2 Tools 101
  • 4.6.3 ESD Model Types 103
  • 4.6.4 Extraction of PCB Paths 104
  • 4.6.5 Models of PCB Devices 104
  • 4.6.6 Characterization of IO Cells 106
  • 4.6.7 Power Clamp Models 112
  • 4.6.8 Model for Stress Waveform 114
  • 4.7 Characterization of Soft Failures 116
  • 4.7.1 Purpose and Basic Concept 116
  • 4.7.2 Pin Specific Soft Failure Characterization 120
  • 4.7.3 Soft Failures Related to Signal Integrity Problems 123
  • 4.8 Summary of SEED Characterization 125
  • Acknowledgments 126
  • References 127
  • 5 Hard Failures and PCB Protection Devices 129 Robert Ashton
  • 5.1 Introduction 129
  • 5.2 ESD Damage to ICs 129
  • 5.3 Protection Methods 130
  • 5.3.1 Classification of TVS Devices 133
  • 5.4 Characteristics of Protection Devices 134
  • 5.4.1 Current Limiting Devices 134
  • 5.4.2 TVS Properties in Their Off-State 135
  • 5.4.3 Protection Properties of TVS Devices 137
  • 5.5 Types of Protection Devices for ESD 142
  • 5.5.1 Silicon Based TVS Devices 143
  • 5.5.2 Metal Oxide Varistors 154
  • 5.5.3 Polymer Voltage Suppressors 155
  • 5.5.4 Gas Discharge Tubes 156
  • 5.5.5 Spark Gaps on PCBs 158
  • 5.5.6 Thyristor Surge Protection Devices 159
  • 5.5.7 Ferrite Beads 159
  • 5.5.8 Passive Components 161
  • 5.5.9 Common Mode Filters 162
  • 5.6 Primary and Secondary Protection 163
  • 5.7 Evaluating IC Pins 164
  • 5.8 Choosing ESD Protection Devices 164
  • 5.8.1 Coordination between TVS Device and Sensitive Nodes 165
  • 5.9 Summary 167
  • References 167
  • 6 Soft Failure Mechanisms and PCB Design Measures 169 David Pommerenke and Pratik Maheshwari
  • 6.1 Introduction 169
  • 6.2 Are HBM, CDM, MM, and Latch-Up Results Meaningful Soft Failures? 171
  • 6.3 Classification of Soft Failure Modes 173
  • 6.3.1 In-Band/Out-of-Band with Respect to Voltage 174
  • 6.3.2 In-Band/Out-of-Band with Respect to Pulse Width 175
  • 6.3.3 Local vs Distant Errors 176
  • 6.3.4 Amplified/Non-amplified Soft Failures 176
  • 6.4 Optimized System Level Testing 178
  • 6.5 Soft Failure Characterization Methods 182
  • 6.5.1 Susceptibility Scanning 183
  • 6.5.2 Current Spreading Reconstruction 190
  • 6.5.3 Local Injection 191
  • 6.5.4 Software-Based Methods for Soft Failure Analysis 201
  • 6.6 Soft Failure Examples 205
  • 6.6.1 Example 1: Soft Failure Caused by Field Injection on a DUT (Mini Photo Frame) 205
  • 6.6.2 Example 2: PLL Disturbance Measurement 207
  • 6.6.3 Example 3: Direct Field Coupling on the USB Data Bus 212
  • 6.6.4 Example 4: Direct Injection on the MIPI Bus Interface 215
  • 6.7 Countermeasure Examples 216
  • 6.7.1 Divert Current 216
  • 6.7.2 Filtering 217
  • 6.7.3 Shielding 217
  • 6.7.4 Secondary ESD Avoidance 218
  • 6.7.5 Improved Connector-Cable Shield Connection 218
  • 6.7.6 Enclosure to Connector Shield Junction 218
  • 6.7.7 Firmware 218
  • 6.7.8 Reducing Crosstalk 219
  • 6.7.9 Reduce ESD Current by Resistance 220
  • 6.7.10 Avoid ESD 222
  • 6.8 The Way Forward 223
  • Acknowledgment 230
  • References 231
  • 7 ESD in Mobile Devices 234 Matti Uusimäki
  • 7.1 Introduction 234
  • 7.2 ESD Energy Path in Mobile Device 234
  • 7.3 ESD Generation Examples on a Large Scale 239
  • 7.3.1 Large Machines Generating Charges to Their Isolated Bodies 239
  • 7.3.2 Tribo-Electric Series 240
  • 7.3.3 Charge Generated by a Person Inside a Car 240
  • 7.3.4 The Charge Generated to Mobile Device by Accident in Grounded System 241
  • 7.3.5 Alternative Discharging Paths at Connection Moment 244
  • 7.3.6 Charge Behavior at Insulator Surface 244
  • 7.3.7 Example of Consumer Level Charge Generation with Simple Device 246
  • 7.4 Relation between Electrostatic Discharge Immunity Test and Real-World Discharge Waveforms 248
  • 7.5 Laboratory Test Methods 248
  • 7.6 Fast ESD and Slow ESD Concepts 249
  • 7.7 Fast-ESD and Slow-ESD in a Mobile Device 250
  • 7.7.1 Example of Ground Level Bounce Relative to an External Module 251
  • 7.8 Isolating a Mobile Device 252
  • 7.8.1 Example 1: Material Thickness 252
  • 7.8.2 Example 2: Solid Glue 253
  • 7.8.3 Example 3: Positioning Holes in a Rubberized Key Mat 255
  • 7.8.4 Example 4: Induced Electric Field 255
  • 7.9 Shielding a Mobile Device 257
  • 7.10 Orientation Effects on ESD Path 259
  • 7.10.1 ESD Path Example: Phone Face Up on Table 259
  • 7.10.2 ESD Path Example: Phone Face Down on the Table 263
  • 7.11 ESD Design in Practice 264
  • 7.11.1 Grounding Challenges in Practice 264
  • 7.12 PCB Layout Considerations of Metal Shielding “Cans” 267
  • 7.12.1 Components Near the Edge of the Shield 268
  • 7.13 ESD Protection for Cable Interfaces 269
  • 7.13.1 Cable Placement and Common Mode Current in a Mobile Device 270
  • 7.13.2 Localizing Noise Current with Alternate Cabling Placement 274
  • 7.13.3 Cable Interface Protection Components 275
  • 7.14 Common Mode Impedance Concerns for Layout 280
  • 7.14.1 Common Mode Impedance Challenges in the Grounding Paths 280
  • 7.14.2 Signals with Shared Common Mode Impedance 280
  • 7.14.3 Isolating Signals with Shield Grounded to Internal PCB Layers 282
  • 7.14.4 Simulated Example of Ground Impedance Effect on ESD/EMI Filter Performance 283
  • 7.14.5 ESD Protection on Stacked Chips 283
  • 7.14.6 Layout Concerns around the Periphery and PCB Cutouts 285
  • 7.15 ESD and Software Considerations in Mobile Devices 287
  • 7.15.1 Role of Software in EMC and ESD Design 287
  • 7.15.2 Signal Sensitivity to ESD Examples 288
  • 7.15.3 Delayed Effects on Software from ESD Events 290
  • 7.16 Software Versions Utilized in Early ESD Immunity Testing 291
  • 7.17 Conclusion 292
  • References 292
  • 8 ESD for Automotive
  • Applications 294 Wolfgang Reinprecht
  • 8.1 Introduction and Historical Aspects 294
  • 8.1.1 Why Do Automotive Components Require High ESD Levels? 294
  • 8.1.2 Field Return Rate of Automotive Products due to System Level ESD Events 296
  • 8.1.3 ESD Related Field Returns Because of Incomplete Specification or Missing System Protection 297
  • 8.2 Automotive Components 299
  • 8.2.1 Communication Systems CAN, LIN, FlexRay 299
  • 8.2.2 Power Supply Systems as DCDC Converter, Alternator, LDO 303
  • 8.2.3 Sensors and Sensor Interfaces 304
  • 8.2.4 Keyless Entry/Go with Components Exposed to Human Touching/Handling 311
  • 8.2.5 Power Steering, Drive by Wire, Gearbox, Hybrid Systems, Recuperation 313
  • 8.2.6 LED Lights, Entertainment, Navigation, and Audio 313
  • 8.3 Design Constraints, Operating Voltage, and Overvoltage Tolerance 315
  • 8.3.1 “Normal Overvoltage Range”: 18 V into 5 V/3 V/1.8 V 315
  • 8.3.2 Load Dump 315
  • 8.3.3 Loss of Ground, Dual Polarity, and Reverse Polarity 317
  • 8.3.4 EMC Tolerance versus ESD Robustness (Fast Transients) 319
  • 8.3.5 Leakage Current versus ESD Robustness (Pre-Pulse Voltage) 320
  • 8.3.6 Latch-Up-Free ESD Protection versus Snapback Devices 321
  • 8.4 On-Board ESD Protection and Internal ESD Protection 324
  • 8.4.1 Characterization Met ...