Cargando…

Chaos analysis and chaotic EMI suppression of DC-DC converters /

"Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply designDC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhang, Bo, 1962 January-
Otros Autores: Wang, Xuemei (Electrical engineer)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : John Wiley & Sons, Inc., 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgments; Chapter 1 Nonlinear Models and Behaviors of DC-DC Converters; 1.1 Introduction; 1.2 Overview of PWM DC-DC Converters; 1.2.1 Principle of Pulse Width Modulation; 1.2.2 Basic Topologies of DC-DC Converters; 1.2.3 Operation Modes of DC-DC Converters; 1.2.4 State-Space Model of DC-DC Converters; 1.2.5 Discrete Model of DC-DC Converters; 1.3 Overview of the Nonlinear Behavior of DC-DC Converters; 1.4 Review of Basic Dynamics Concepts; 1.4.1 Dynamical System; 1.4.2 Linear and Nonlinear Dynamical Systems.
  • 1.4.3 Characterization of Nonlinear Behavior1.5 Conclusions; References; Chapter 2 Symbolic Analysis of the Nonlinear Behavior of DC-DC Converters; 2.1 Introduction; 2.2 Overview of the Time Series Principle of Discrete Systems; 2.2.1 Symbolic Dynamics and Symbolic Time Series; 2.2.2 Symbolization Method; 2.2.3 Symbolic Dynamics of a Period-Doubling Cascade; 2.3 Block Entropy; 2.4 Symbolic Time Series Analysis of DC-DC Converters; 2.4.1 Period-Doubling Bifurcation and Chaos of DC-DC Converters; 2.4.2 Border Collision Bifurcation and Chaos of DC-DC Converters; 2.5 Conclusions; References.
  • Chapter 3 Complexity of the Nonlinear Behavior of DC-DC Converters3.1 Introduction; 3.2 Lempel-Ziv Complexity and Analysis of Nonlinear Behavior of DC-DC Converters Based on L-Z Complexity; 3.2.1 Lempel-Ziv Complexity; 3.2.2 Analysis of Lempel-Ziv Complexity of Buck Converter; 3.3 Switching Block of DC-DC Converters; 3.4 Weight Lempel-Ziv Complexity and Analysis of Nonlinear Behavior of DC-DC Converters Based on Weight L-Z Complexity; 3.4.1 Weight Lempel-Ziv Complexity; 3.4.2 Weight Lempel-Ziv Complexity of Buck Converter.
  • 3.4.3 Qualitative Analysis of Bifurcation Phenomena Based on Complexity3.5 Duplicate Symbolic Sequence and Complexity; 3.5.1 Main Switching Block and Main Symbolic Sequence; 3.5.2 Secondary Switching Block and Secondary Symbolic Sequence; 3.5.3 Duplicate Symbolic Sequence; 3.5.4 Analysis of Border Collision and Bifurcation in DC-DC Converters Based on Duplicate Symbolic Sequence; 3.6 Applied Example; 3.7 Conclusions; References; Chapter 4 Invariant Probability Distribution of DC-DC Converters; 4.1 Introduction; 4.2 Invariant Probability Distribution of Chaotic Map.
  • 4.3 Calculating Invariant Probability Distribution of the Chaotic Discrete-Time Maps with Eigenvector Method4.4 Invariant Probability Distribution of the Chaotic Mapping of the Boost Converter; 4.5 Application Examples of Invariant Probability Distribution; 4.5.1 Power Spectral Density of the Input Current in a DC-DC Converters; 4.5.2 Average Switching Frequency; 4.5.3 Parameter Design with Invariant Probability Distribution; 4.6 Conclusions; References; Chapter 5 EMI and EMC of Switching Power Converters; 5.1 Introduction; 5.2 EMI Origin of Electric Circuits.