Cargando…

Topics in stochastic processes /

Topics in Stochastic Processes.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ash, Robert B.
Otros Autores: Gardner, Melvin Frank, 1944-, Birnbaum, Z. W., Lukacs, E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Academic Press/Elsevier Science, [2014], ©1975.
Colección:Probability and mathematical statistics ; v. 27.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Topics in Stochastic Processes; Copyright Page; Table of Contents; PREFACE; Chapter 1. L2 Stochastic Processes; 1.1 Introduction; 1.2 Covariance Functions; 1.3 Second Order Calculus; 1.4 Karhunen-Loève Expansion; 1.5 Estimation Problems; 1.6 Notes; Chapter 2. Spectral Theory and Prediction; 2.1 Introduction; L2 Stochastic Integrals; 2.2 Decomposition of Stationary Processes; 2.3 Examples of Discrete Parameter Processes; 2.4 Discrete Parameter Prediction: Special Cases; 2.5 Discrete Parameter Prediction: General Solution; 2.6 Examples of Continuous Parameter Processes.
  • 2.7 Continuous Parameter Prediction in Special Cases Yaglom's Method; 2.8 Some Stochastic Differential Equations; 2.9 Continuous Parameter Prediction: Remarks on the General Solution; 2.10 Notes; Chapter 3. Ergodic Theory; 3.1 Introduction; 3.2 Ergodicity and Mixing; 3.3 The Pointwise Ergodic Theorem; 3.4 Applications to Real Analysis; 3.5 Applications to Markov Chains; 3.6 The Shannon-McMillan Theorem; 3.7 Notes; Chapter 4. Sample Function Analysis of Continuous Parameter Stochastic Processes; 4.1 Separability; 4.2 Measurability; 4.3 One-Dimensional Brownian Motion.
  • 4.4 Law of the Iterated Logarithm4.5 Markov Processes; 4.6 Processes with Independent Increments; 4.7 Continuous Parameter Martingales; 4.8 The Strong Markov Property; 4.9 Notes; Chapter 5. The Itô Integral and Stochastic Differential Equations; 5.1 Definition of the Itô Integral; 5.2 Existence and Uniqueness Theorems for Stochastic Differential Equations; 5.3 Stochastic Differentials: A Chain Rule; 5.4 Notes; Appendix 1: Some Results from Complex Analysis; A1.1 Definitions and Comments; A1.2 Lemma; A1.3 Fatou's Radial Limit Theorem; A1.4 The Space H; A1.5 Theorem; A1.6 Theorem; A1.7 Theorem.
  • Appendix 2: Fourier Transforms on the Real LineA2.1 Some Basic Properties; A2.2 Lemma; A2.3 Lemma; A2.4 Lemma; A2.5 Inversion Theorem; A2.6 Fourier-Plancherel Theorem; References; Solutions to Problems; Index.