Discrete Algorithms and Complexity : Proceedings of the Japan-US Joint Seminar, June 4-6, 1986, Kyoto, Japan.
Discrete Algorithms and Complexity.
Clasificación: | Libro Electrónico |
---|---|
Autores Corporativos: | , , |
Otros Autores: | , , , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Orlando :
Academic Press,
1987.
|
Colección: | Perspectives in computing (Boston, Mass.) ;
vol. 15. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Discrete Algorithms and Complexity; Copyright Page; Table of Contents; Contributors; Foreword; Chapter 1. An Upper Bound on the Expected Cost of an Optimal Assignment; Introduction; A Regularity Condition; The Transportation Problem and its Dual; Acknowledgement; References; Chapter 2. The Principal Partition of Vertex-Weighted Graphs and Its Applications; 1. Introduction; 2. The Principal Partition of Vertex-Weighted Graphs and Solution Algorithms For Problem 2; 3. Flow Assignment In The Graph Defined For Problem 4: Part 1.
- 4. Flow Assignment In The Graph Defined For Problem 4: Part25. Applications; 6. Concluding Remarks; References; Chapter 3. Generalized Colorings; 0. Introduction; 1. Parameters; 2. Algorithmic Issues; 3. Obstructions; 4. The Homomorphism Order; REFERENCES; Chapter 4. Voronoi Diagram for Points in a Simple Polygon; 1. Introduction; 2. Sketch of the algorithm; 3. Constructing the weighted Voronoi diagram; References; Chapter 5. Computing the Geodesic Center of aSimple Polygon; 1. Introduction; 2. Uniqueness of Geodesic Center; 3. Geodesic Diameter of a Simple Polygon.
- 4. Farthest-Point Voronoi DiagraReferences; Chapter 6. On deleting vertices to make a graph of positive genus planar; 1. Introduction; 2. Background in topologioal graph theory and order arithmetic; 3. The main result; 4. Conclusion; References; Chapter 7. Algorithms for Routing around a Rectangle; 1. Introduction; 2. Edge-disjoint paths; 3. Routing; 4. Minimum area routing; References; Chapter 8. A Remark on the Complexity of the Knapsack Problem; 1. Introduction; 2. The Basic Algorithm and a Restricted Modification; 3. The Three List Problem and its Relation to the Knapsack Problem.