Cargando…

Global surgery formula for the Casson-Walker invariant /

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lescop, Christine, 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, 1996.
Colección:Annals of mathematics studies ; no. 10.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn891398210
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 140830t19961996njua ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d DEBSZ  |d DEBBG  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 888743940  |a 961647016  |a 962619379 
020 |a 9781400865154  |q (e-book) 
020 |a 1400865158  |q (e-book) 
020 |z 9780691021324 
029 1 |a DEBBG  |b BV042524172 
029 1 |a DEBBG  |b BV043611263 
029 1 |a DEBBG  |b BV044069694 
029 1 |a DEBSZ  |b 415193575 
029 1 |a DEBSZ  |b 445582618 
029 1 |a DEBSZ  |b 44678057X 
035 |a (OCoLC)891398210  |z (OCoLC)888743940  |z (OCoLC)961647016  |z (OCoLC)962619379 
050 4 |a QA613.658  |b .L473 1996eb 
082 0 4 |a 514/.72  |2 20 
049 |a UAMI 
100 1 |a Lescop, Christine,  |d 1966-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjrG9PTvKpkqwqdJP69RXb 
245 1 0 |a Global surgery formula for the Casson-Walker invariant /  |c by Christine Lescop. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c 1996. 
264 4 |c ©1996 
300 |a 1 online resource (155 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of Mathematics Studies ;  |v Number 10 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a Cover; Title; Copyright; Table of contents; Chapter 1: Introduction and statements of the results; 1.1 Introduction; 1.2 Conventions; 1.3 Surgery presentations and associated functions; 1.4 Introduction of the surgery formula F; 1.5 Statement of the theorem; 1.6 Sketch of the proof of the theorem and organization of the book; 1.7 Equivalent definitions for F; Chapter 2: The Alexander series of a link in a rational homology sphere and some of its properties; 2.1 The background; 2.2 A definition of the Alexander series; 2.3 A list of properties for the Alexander series. 
505 8 |6 880-02  |a 6.2 The formula involving the figure-eight linking6.3 Congruences and relations with the Rohlin invariant; 6.4 The surgery formula in terms of one-variable Alexander polynomials; Appendix: More about the Alexander series; A.1 Introduction; A.2 Complete definition of the Reidemeister torsion of (N, o(N)) up to positive units; A.3 Proof of the symmetry property of the Reidemeister torsion; A.4 Various properties of the Reidemeister torsion; A.5 A systematic way of computing the Alexander polynomials of links in S^3; A.6 Relations with one-variable Alexander polynomials; Bibliography. 
520 |a This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Surgery (Topology) 
650 0 |a Three-manifolds (Topology) 
650 4 |a Surgery (Topology) 
650 4 |a Three-manifolds (Topology) 
650 6 |a Chirurgie (Topologie) 
650 6 |a Variétés topologiques à 3 dimensions. 
650 7 |a Surgery (Topology)  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
758 |i has work:  |a Global surgery formula for the Casson-Walker invariant (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFt9wFDcTGM8mbHPvXCBWC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lescop, Christine, 1966-  |t Global surgery formula for the Casson-Walker invariant.  |d Princeton, New Jersey : Princeton University Press, ©1996  |h 150 pages  |k Annals of mathematics studies ; Number 10  |z 9780691021324 
830 0 |a Annals of mathematics studies ;  |v no. 10. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1756193  |z Texto completo 
880 8 |6 505-01/(S  |a 2.4 Functions of the linking numbers of a link2.5 The first terms of the Alexander series; Chapter 3: Invariance of the surgery formula under a twist homeomorphism; 3.1 Introduction; 3.2 Variation of the different pieces of FM under an ω-twist: the statements; 3.3 Proofs of 3.2.13 and 3.2.16; 3.4 More linking functions: semi-open graphs and functions α; 3.5 Variation of the ζ-coefficients under an ω-twist; 3.6 Proof of 3.2.11 (variation of the piece containing the ζ-coefficients under the ω-twist); Chapter 4: The formula for surgeries starting from rational homology spheres. 
880 8 |6 505-02/(S  |a 4.1 Introduction4.2 Sketch of the proof of Proposition T2; 4.3 Proof of Lemma 4.2.2; 4.4 Proof of Lemma 4.2.3; 4.5 Proof of Lemma 4.2.5; 4.6 The Walker surgery formula; 4.7 Comparing T2 with the Walker surgery formula; Chapter 5: The invariant λ for 3-manifolds with nonzero rank; 5.1 Introduction; 5.2 The coefficients a1 of homology unlinks in rational homology spheres (after Hoste); 5.3 Computing λ for manifolds with rank at least 2; Chapter 6: Applications and variants of the surgery formula; 6.1 Computing λ for all oriented Seifert fibered spaces using the formula. 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1756193 
938 |a ebrary  |b EBRY  |n ebr10909209 
994 |a 92  |b IZTAP