Cargando…

Automatic modulation classification : principles, algorithms, and applications /

Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhu, Zhechen
Otros Autores: Nandi, Asoke Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons Inc., 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn889688567
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 140829s2015 nju ob 001 0 eng
010 |a  2014034882 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d EBLCP  |d DG1  |d CDX  |d OCLCF  |d COO  |d DEBSZ  |d S4S  |d RECBK  |d DEBBG  |d VLB  |d K6U  |d COCUF  |d DG1  |d CCO  |d LIP  |d PIFFA  |d FVL  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d STF  |d CEF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d AUD  |d OCLCQ  |d DCT  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 901177567  |a 903173183  |a 907356148  |a 911063535  |a 992926626 
020 |a 9781118906514  |q (ePub) 
020 |a 1118906519  |q (ePub) 
020 |a 9781118906521  |q (Adobe PDF) 
020 |a 1118906527  |q (Adobe PDF) 
020 |a 9781118906507 
020 |a 1118906500 
020 |z 9781118906491  |q (cloth) 
020 |z 1118906497 
028 0 1 |a EB00591929  |b Recorded Books 
029 1 |a AU@  |b 000053659441 
029 1 |a AU@  |b 000067289209 
029 1 |a CHBIS  |b 010442297 
029 1 |a CHNEW  |b 000943498 
029 1 |a CHVBK  |b 480237239 
029 1 |a DEBBG  |b BV043397092 
029 1 |a DEBBG  |b BV044072397 
029 1 |a DEBSZ  |b 431873879 
029 1 |a DEBSZ  |b 449477037 
029 1 |a DEBSZ  |b 485051753 
029 1 |a NZ1  |b 15913633 
035 |a (OCoLC)889688567  |z (OCoLC)901177567  |z (OCoLC)903173183  |z (OCoLC)907356148  |z (OCoLC)911063535  |z (OCoLC)992926626 
042 |a pcc 
050 0 0 |a TK5102.9 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.3815/36  |2 23 
049 |a UAMI 
100 1 |a Zhu, Zhechen. 
245 1 0 |a Automatic modulation classification :  |b principles, algorithms, and applications /  |c Zhechen Zhu and Asoke K. Nand. 
264 1 |a Hoboken :  |b John Wiley & Sons Inc.,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability. This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algorithms, as well as guidance on state-of-the-art classification designs with specific military and civilian applications in mind. Key Features: -Provides an important collection of AMC algorithms in five major categories, from likelihood-based classifiers and distribution-test-based classifiers to feature-based classifiers, machine learning assisted classifiers and blind modulation classifiers -Lists detailed implementation for each algorithm based on a unified theoretical background and a comprehensive theoretical and numerical performance comparison -Gives clear guidance for the design of specific automatic modulation classifiers for different practical applications in both civilian and military communication systems -Includes a MATLAB toolbox on a companion website offering the implementation of a selection of methods discussed in the book. 
505 0 |a Title Page; Copyright Page; Contents; About the Authors; Preface; List of Abbreviations; List of Symbols; Chapter 1 Introduction; 1.1 Background; 1.2 Applications of AMC; 1.2.1 Military Applications; 1.2.2 Civilian Applications; 1.3 Field Overview and Book Scope; 1.4 Modulation and Communication System Basics; 1.4.1 Analogue Systems and Modulations; 1.4.2 Digital Systems and Modulations; 1.4.3 Received Signal with Channel Effects; 1.5 Conclusion; References; Chapter 2 Signal Models for Modulation Classification; 2.1 Introduction; 2.2 Signal Model inAWGNChannel. 
505 8 |a 2.2.1 Signal Distribution of I-Q Segments2.2.2 Signal Distribution of Signal Phase; 2.2.3 Signal Distribution of Signal Magnitude; 2.3 Signal Models in Fading Channel; 2.4 Signal Models in Non-Gaussian Channel; 2.4.1 Middleton ́s Class A Model; 2.4.2 Symmetric Alpha Stable Model; 2.4.3 Gaussian Mixture Model; 2.5 Conclusion; References; Chapter 3 Likelihood-based Classifiers; 3.1 Introduction; 3.2 Maximum Likelihood Classifiers; 3.2.1 Likelihood Function inAWGNChannels; 3.2.2 Likelihood Function in Fading Channels; 3.2.3 Likelihood Function in Non-Gaussian Noise Channels. 
505 8 |a 3.2.4 Maximum Likelihood Classification Decision Making3.3 Likelihood Ratio Test for Unknown Channel Parameters; 3.3.1 Average Likelihood Ratio Test; 3.3.2 Generalized Likelihood Ratio Test; 3.3.3 Hybrid Likelihood Ratio Test; 3.4 Complexity Reduction; 3.4.1 Discrete Likelihood Ratio Test and Lookup Table; 3.4.2 Minimum Distance Likelihood Function; 3.4.3 Non-Parametric Likelihood Function; 3.5 Conclusion; References; Chapter 4 Distribution Test-based Classifier; 4.1 Introduction; 4.2 Kolmogorov-Smirnov Test Classifier; 4.2.1 The KS Test for Goodness of Fit. 
505 8 |a 4.2.2 One-sample KS Test Classifier4.2.3 Two-sample KS Test Classifier; 4.2.4 Phase Difference Classifier; 4.3 Cramer-Von Mises Test Classifier; 4.4 Anderson-Darling Test Classifier; 4.5 Optimized Distribution Sampling Test Classifier; 4.5.1 Sampling Location Optimization; 4.5.2 Distribution Sampling; 4.5.3 Classification Decision Metrics; 4.5.4 Modulation Classification Decision Making; 4.6 Conclusion; References; Chapter 5 Modulation Classification Features; 5.1 Introduction; 5.2 Signal Spectral-based Features; 5.2.1 Signal Spectral-based Features; 5.2.2 Spectral-based Features Specialities. 
505 8 |a 5.2.3 Spectral-based Features Decision Making5.2.4 Decision Threshold Optimization; 5.3 Wavelet Transform-based Features; 5.4 High-order Statistics-based Features; 5.4.1 High-order Moment-based Features; 5.4.2 High-order Cumulant-based Features; 5.5 Cyclostationary Analysis-based Features; 5.6 Conclusion; References; Chapter 6 Machine Learning for Modulation Classification; 6.1 Introduction; 6.2 K-Nearest Neighbour Classifier; 6.2.1 Reference Feature Space; 6.2.2 Distance Definition; 6.2.3 K-Nearest Neighbour Decision; 6.3 Support Vector Machine Classifier. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Modulation (Electronics) 
650 6 |a Modulation (Électronique) 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Modulation (Electronics)  |2 fast 
700 1 |a Nandi, Asoke Kumar. 
758 |i has work:  |a Automatic modulation classification (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTFBGPGxtmQqFQkjMKw4q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Zhu, Zhechen.  |t Automatic modulation classification.  |d Hoboken : John Wiley & Sons Inc., 2015  |z 9781118906491  |w (DLC) 2014032270 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895732  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 30391168 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1895732 
938 |a EBSCOhost  |b EBSC  |n 928788 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00591929 
994 |a 92  |b IZTAP