|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn881688889 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140624s2014 riu ob 001 0 eng |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d COO
|d OCLCF
|d TFW
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d UKAHL
|d UX1
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259244975
|a 1260322053
|
020 |
|
|
|a 9781470417222
|q (online)
|
020 |
|
|
|a 1470417227
|q (online)
|
020 |
|
|
|z 9780821898437
|q (alk. paper)
|
020 |
|
|
|z 0821898434
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)881688889
|z (OCoLC)1259244975
|z (OCoLC)1260322053
|
050 |
|
4 |
|a QA649
|b .I93 2014
|
082 |
0 |
4 |
|a 516.3/62
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ivanov, Stefan P.,
|e author.
|
245 |
1 |
0 |
|a Quaternionic contact :
|b Einstein structures and the quaternionic contact Yamabe problems /
|c Stefan Ivanov, Ivan Minchev, Dimiter Vassilev.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2014.
|
300 |
|
|
|a 1 online resource (v, 82 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1086
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 231, number 1086 (third of 5 numbers), September 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 77-79) and index.
|
505 |
0 |
|
|a Introduction -- Quaternionic contact structures and the Biquard connection -- The torsion and curvature of the Biquard connection -- QC-Einstein quaternionic contact structures -- Conformal transformations of a qc-structure -- Special functions and pseudo-Einstein quaternionic contact structures -- Infinitesimal automorphisms -- Quaternionic contact Yamabe problem.
|
520 |
|
|
|a A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A ""3-Hamiltonian form"" of infinitesima
|
546 |
|
|
|a Text in English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Contact manifolds.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
6 |
|a Variétés de contact (Géométrie)
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
7 |
|a Contact manifolds
|2 fast
|
650 |
|
7 |
|a Geometry, Differential
|2 fast
|
650 |
|
7 |
|a Group theory
|2 fast
|
700 |
1 |
|
|a Minchev, Ivan
|c (Mathematics professor),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjJ78mt8RKTCmQPVmppjJC
|
700 |
1 |
|
|a Vassilev, Dimiter N.,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Quaternionic contact (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGM89CBRXCDVpmH33RcVRX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Ivanov, Stefan P.
|t Quaternionic contact.
|d Providence, Rhode Island : American Mathematical Society, 2014
|z 9780821898437
|w (DLC) 2014015536
|w (OCoLC)879329686
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1086.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295304
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444880
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295304
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358251
|
994 |
|
|
|a 92
|b IZTAP
|