Multi-agent machine learning : a reinforcement approach /
"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons,
[2014]
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_ocn881065009 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 140604s2014 nju ob 001 0 eng | ||
010 | |a 2014021985 | ||
040 | |a DLC |b eng |e rda |e pn |c DLC |d YDX |d N$T |d EBLCP |d IDEBK |d OCLCF |d YDXCP |d E7B |d CDX |d RECBK |d COO |d DG1 |d DEBSZ |d B24X7 |d DEBBG |d OCLCQ |d COCUF |d MOR |d CCO |d LIP |d PIFAG |d ZCU |d LIV |d MERUC |d OCLCQ |d U3W |d BUF |d OCLCQ |d STF |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d TKN |d OCLCQ |d DKC |d OCLCQ |d UMI |d BRF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 961611919 |a 962663050 |a 992918069 |a 1055378997 |a 1081229249 |a 1129585450 | ||
020 | |a 9781118884485 |q (ePub) | ||
020 | |a 1118884485 |q (ePub) | ||
020 | |a 9781118884478 |q (Adobe PDF) | ||
020 | |a 1118884477 |q (Adobe PDF) | ||
020 | |a 9781118884614 | ||
020 | |a 1118884612 | ||
020 | |a 9781322094762 | ||
020 | |a 1322094764 | ||
020 | |z 9781118362082 |q (hardback) | ||
020 | |z 111836208X | ||
029 | 1 | |a AU@ |b 000053596520 | |
029 | 1 | |a AU@ |b 000053790775 | |
029 | 1 | |a AU@ |b 000062004765 | |
029 | 1 | |a AU@ |b 000067101051 | |
029 | 1 | |a CHBIS |b 010441678 | |
029 | 1 | |a CHNEW |b 000943205 | |
029 | 1 | |a CHVBK |b 480234256 | |
029 | 1 | |a DEBBG |b BV042989995 | |
029 | 1 | |a DEBBG |b BV043396847 | |
029 | 1 | |a DEBBG |b BV044070148 | |
029 | 1 | |a DEBSZ |b 422918725 | |
029 | 1 | |a DEBSZ |b 431760268 | |
029 | 1 | |a DEBSZ |b 449447154 | |
029 | 1 | |a DEBSZ |b 485049252 | |
029 | 1 | |a NZ1 |b 15910051 | |
035 | |a (OCoLC)881065009 |z (OCoLC)961611919 |z (OCoLC)962663050 |z (OCoLC)992918069 |z (OCoLC)1055378997 |z (OCoLC)1081229249 |z (OCoLC)1129585450 | ||
037 | |a CL0501000083 |b Safari Books Online | ||
042 | |a pcc | ||
050 | 0 | 0 | |a Q325.6 |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 0 | 0 | |a 519.3 |2 23 |
084 | |a TEC008000 |2 bisacsh | ||
049 | |a UAMI | ||
100 | 1 | |a Schwartz, Howard M., |e editor. | |
245 | 1 | 0 | |a Multi-agent machine learning : |b a reinforcement approach / |c Howard M. Schwartz. |
264 | 1 | |a Hoboken, NJ : |b John Wiley & Sons, |c [2014] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"-- |c Provided by publisher | ||
520 | |a "Provide an in-depth coverage of multi-player, differential games and Gam theory"-- |c Provided by publisher | ||
588 | 0 | |a Print version record and CIP data provided by publisher. | |
505 | 0 | |a Cover; Title Page; Copyright; Preface; References; Chapter 1: A Brief Review of Supervised Learning; 1.1 Least Squares Estimates; 1.2 Recursive Least Squares; 1.3 Least Mean Squares; 1.4 Stochastic Approximation; References; Chapter 2: Single-Agent Reinforcement Learning; 2.1 Introduction; 2.2 n-Armed Bandit Problem; 2.3 The Learning Structure; 2.4 The Value Function; 2.5 The Optimal Value Functions; 2.6 Markov Decision Processes; 2.7 Learning Value Functions; 2.8 Policy Iteration; 2.9 Temporal Difference Learning; 2.10 TD Learning of the State-Action Function; 2.11 Q-Learning. | |
505 | 8 | |a 2.12 Eligibility TracesReferences; Chapter 3: Learning in Two-Player Matrix Games; 3.1 Matrix Games; 3.2 Nash Equilibria in Two-Player Matrix Games; 3.3 Linear Programming in Two-Player Zero-Sum Matrix Games; 3.4 The Learning Algorithms; 3.5 Gradient Ascent Algorithm; 3.6 WoLF-IGA Algorithm; 3.7 Policy Hill Climbing (PHC); 3.8 WoLF-PHC Algorithm; 3.9 Decentralized Learning in Matrix Games; 3.10 Learning Automata; 3.11 Linear Reward-Inaction Algorithm; 3.12 Linear Reward-Penalty Algorithm; 3.13 The Lagging Anchor Algorithm; 3.14 L R-I Lagging Anchor Algorithm; References. | |
505 | 8 | |a Chapter 4: Learning in Multiplayer Stochastic Games4.1 Introduction; 4.2 Multiplayer Stochastic Games; 4.3 Minimax-Q Algorithm; 4.4 Nash Q-Learning; 4.5 The Simplex Algorithm; 4.6 The Lemke-Howson Algorithm; 4.7 Nash-Q Implementation; 4.8 Friend-or-Foe Q-Learning; 4.9 Infinite Gradient Ascent; 4.10 Policy Hill Climbing; 4.11 WoLF-PHC Algorithm; 4.12 Guarding a Territory Problem in a Grid World; 4.13 Extension of L R-I Lagging Anchor Algorithm to Stochastic Games; 4.14 The Exponential Moving-Average Q-Learning (EMA Q-Learning) Algorithm. | |
505 | 8 | |a 5.12 Reward Shaping in the Differential Game of Guarding a Territory5.13 Simulation Results; References; Chapter 6: Swarm Intelligence and the Evolution of Personality Traits; 6.1 Introduction; 6.2 The Evolution of Swarm Intelligence; 6.3 Representation of the Environment; 6.4 Swarm-Based Robotics in Terms of Personalities; 6.5 Evolution of Personality Traits; 6.6 Simulation Framework; 6.7 A Zero-Sum Game Example; 6.8 Implementation for Next Sections; 6.9 Robots Leaving a Room; 6.10 Tracking a Target; 6.11 Conclusion; References; Index; End User License Agreement. | |
590 | |a O'Reilly |b O'Reilly Online Learning: Academic/Public Library Edition | ||
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Reinforcement learning. | |
650 | 0 | |a Differential games. | |
650 | 0 | |a Swarm intelligence. | |
650 | 0 | |a Machine learning. | |
650 | 6 | |a Apprentissage par renforcement (Intelligence artificielle) | |
650 | 6 | |a Jeux différentiels. | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Electronics |x General. |2 bisacsh | |
650 | 7 | |a Differential games |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Reinforcement learning |2 fast | |
650 | 7 | |a Swarm intelligence |2 fast | |
758 | |i has work: |a Multi-agent machine learning (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFWwMdDbgGmCJyf6HPd4YK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Schwartz, Howard M. |t Multi-agent machine learning. |d Hoboken, NJ : John Wiley & Sons, [2014] |z 9781118362082 |w (DLC) 2014016950 |
856 | 4 | 0 | |u https://learning.oreilly.com/library/view/~/9781118362082/?ar |z Texto completo |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1775207 |z Texto completo |
938 | |a Books 24x7 |b B247 |n bks00072864 | ||
938 | |a Coutts Information Services |b COUT |n 29749967 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1775207 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4039542 | ||
938 | |a ebrary |b EBRY |n ebr10921255 | ||
938 | |a EBSCOhost |b EBSC |n 838166 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis29749967 | ||
938 | |a Recorded Books, LLC |b RECE |n rbeEB00582647 | ||
938 | |a YBP Library Services |b YANK |n 11419724 | ||
938 | |a YBP Library Services |b YANK |n 12057363 | ||
938 | |a YBP Library Services |b YANK |n 12677638 | ||
994 | |a 92 |b IZTAP |