Cargando…

Advances in Statistical Monitoring of Complex Multivariate Processes : With Applications in Industrial Process Control.

The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and appl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kruger, Uwe
Otros Autores: Xie, Lei
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2012.
Colección:Statistics in practice.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn880899558
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140505s2012 xx ob 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d EBLCP  |d OSU  |d B24X7  |d DEBSZ  |d COO  |d OCLCF  |d DEBBG  |d OCLCQ  |d OCLCO  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OL$  |d OCLCQ  |d EYM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 818811987  |a 1194818348 
020 |a 9781118381267 
020 |a 1118381262 
020 |a 9780470517246  |q (Adobe PDF) 
020 |a 0470517247  |q (Adobe PDF) 
020 |a 9781118381274  |q (MobiPocket) 
020 |a 1118381270  |q (MobiPocket) 
020 |z 9781119978299  |q (hardback) 
020 |z 9780470028193  |q (hardback) 
029 0 |a AU@  |b 000052911670 
029 1 |a DEBBG  |b BV042644494 
029 1 |a DEBBG  |b BV044167759 
029 1 |a DEBSZ  |b 397369522 
029 1 |a DEBSZ  |b 422916730 
029 1 |a DEBSZ  |b 431206430 
029 1 |a DEBSZ  |b 449318842 
029 1 |a GBVCP  |b 738782033 
035 |a (OCoLC)880899558  |z (OCoLC)818811987  |z (OCoLC)1194818348 
050 4 |a QA278 .K725 2012 
082 0 4 |a 519.535  |a 658.562015195 
049 |a UAMI 
100 1 |a Kruger, Uwe. 
245 1 0 |a Advances in Statistical Monitoring of Complex Multivariate Processes :  |b With Applications in Industrial Process Control. 
260 |a Hoboken :  |b Wiley,  |c 2012. 
300 |a 1 online resource (472 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Statistics in Practice 
588 0 |a Print version record. 
505 0 |a Statistical Monitoring of Complex Multivariate Processes; Contents; Preface; Acknowledgements; Abbreviations; Symbols; Nomenclature; Introduction; Part I Fundamentals of multivariate statistical process control; Chapter 1 Motivation for multivariate statistical process control; 1.1 Summary of statistical process control; 1.1.1 Roots and evolution of statistical process control; 1.1.2 Principles of statistical process control; 1.1.3 Hypothesis testing, Type I and II errors; 1.2 Why multivariate statistical process control; 1.2.1 Statistically uncorrelated variables. 
505 8 |a 1.2.2 Perfectly correlated variables1.2.3 Highly correlated variables; 1.2.4 Type I and II errors and dimension reduction; 1.3 Tutorial session; Chapter 2 Multivariate data modeling methods; 2.1 Principal component analysis; 2.1.1 Assumptions for underlying data structure; 2.1.2 Geometric analysis of data structure; 2.1.3 A simulation example; 2.2 Partial least squares; 2.2.1 Assumptions for underlying data structure; 2.2.2 Deflation procedure for estimating data models; 2.2.3 A simulation example; 2.3 Maximum redundancy partial least squares; 2.3.1 Assumptions for underlying data structure. 
505 8 |a 2.3.2 Source signal estimation2.3.3 Geometric analysis of data structure; 2.3.4 A simulation example; 2.4 Estimating the number of source signals; 2.4.1 Stopping rules for PCA models; 2.4.2 Stopping rules for PLS models; 2.5 Tutorial Session; Chapter 3 Process monitoring charts; 3.1 Fault detection; 3.1.1 Scatter diagrams; 3.1.2 Non-negative quadratic monitoring statistics; 3.2 Fault isolation and identification; 3.2.1 Contribution charts; 3.2.2 Residual-based tests; 3.2.3 Variable reconstruction; 3.3 Geometry of variable projections; 3.3.1 Linear dependency of projection residuals. 
505 8 |a 3.3.2 Geometric analysis of variable reconstruction3.4 Tutorial session; Part II Application studies; Chapter 4 Application to a chemical reaction process; 4.1 Process description; 4.2 Identification of a monitoring model; 4.3 Diagnosis of a fault condition; Chapter 5 Application to a distillation process; 5.1 Process description; 5.2 Identification of a monitoring model; 5.3 Diagnosis of a fault condition; Part III Advances in multivariate statistical process control; Chapter 6 Further modeling issues; 6.1 Accuracy of estimating PCA models; 6.1.1 Revisiting the eigendecomposition of Sz0z0. 
505 8 |a 6.1.2 Two illustrative examples6.1.3 Maximum likelihood PCA for known Sgg; 6.1.4 Maximum likelihood PCA for unknown Sgg; 6.1.5 A simulation example; 6.1.6 A stopping rule for maximum likelihood PCA models; 6.1.7 Properties of model and residual subspace estimates; 6.1.8 Application to a chemical reaction process-revisited; 6.2 Accuracy of estimating PLS models; 6.2.1 Bias and variance of parameter estimation; 6.2.2 Comparing accuracy of PLS and OLS regression models; 6.2.3 Impact of error-in-variables structure upon PLS models; 6.2.4 Error-in-variable estimate for known See. 
505 8 |a 6.2.5 Error-in-variable estimate for unknown See. 
520 |a The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering. The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applications. In. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Multivariate analysis. 
650 2 |a Multivariate Analysis 
650 6 |a Analyse multivariée. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Multivariate Analysis.  |2 bisacsh 
650 7 |a Multivariate analysis  |2 fast 
700 1 |a Xie, Lei. 
758 |i has work:  |a Advances in Statistical Monitoring of Complex Multivariate Processes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3yK6TthjfVQHT6xtJkdQq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kruger, Uwe.  |t Advances in Statistical Monitoring of Complex Multivariate Processes : With Applications in Industrial Process Control.  |d Hoboken : Wiley, ©2012  |z 9780470028193 
830 0 |a Statistics in practice. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=995876  |z Texto completo 
936 |a BATCHLOAD 
938 |a Books 24x7  |b B247  |n bke00046786 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL995876 
994 |a 92  |b IZTAP