Cargando…

Quantum Networking.

Quantum networks build on entanglement and quantum measurement to achieve tasks that are beyond the reach of classical systems. Using quantum effects, we can detect the presence of eavesdroppers, raise the sensitivity of scientific instruments such as telescopes, or teleport quantum data from one lo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Van Meter, Rodney
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2014.
Colección:ISTE.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Table of Contents; Notations; Acknowledgments; Introduction; Chapter 1. Overview; 1.1. Introduction; 1.2. Quantum information; 1.2.1. Principles; 1.2.2. Imperfect quantum systems; 1.2.3. Quantum computers; 1.2.4. Applications of distributed quantum information; 1.3. Quantum repeaters; 1.3.1. Physical communication technologies; 1.3.2. Multi-hop Bell pairs: quantum communication sessions; 1.4. Network architectures; 1.4.1. Semantics of distributed quantum information; 1.4.2. Identifiers; 1.4.3. Paths; 1.4.4. Resource management discipline; 1.4.5. A quantum internet.
  • 1.5. ConclusionsPART 1. Fundamentals; Chapter 2. Quantum Background; 2.1. Introduction; 2.2. Schrödinger's equation; 2.3. Qubits; 2.3.1. What is a qubit?; 2.3.2. Quantum registers and weighted probabilities; 2.3.3. Interference; 2.3.4. Entanglement; 2.3.5. Decoherence; 2.3.6. Pure and mixed states and the density matrix; 2.3.7. Fidelity; 2.3.8. Measurement; 2.3.9. The partial trace; 2.4. Manipulating qubits; 2.4.1. What is a quantum gate?; 2.4.2. Single-qubit gates and the Bloch sphere; 2.4.3. Global versus relative phase; 2.4.4. Two-qubit gates; 2.4.5. Quantum circuits; 2.5. Bell pairs.
  • 2.5.1. The Bell basis2.5.2. Measurement in the Bell basis; 2.5.3. The Bell inequalities and non-locality; 2.5.4. Experimental demonstration of violation of Bell's inequality; 2.6. The no-cloning theorem; 2.7. Conclusion; Chapter 3. Networking Background; 3.1. Concepts; 3.1.1. Multihop communication: networks as graphs; 3.1.2. Resources; 3.1.3. Protocols; 3.1.4. Naming and addressing; 3.1.5. Security; 3.2. Challenges in scaling up networks; 3.2.1. Heterogeneity; 3.2.2. Scale; 3.2.3. Dealing with out-of-date information; 3.2.4. Organizational needs; 3.2.5. Misbehaving nodes.
  • 3.3. Design patterns3.3.1. Hierarchy; 3.3.2. Layering; 3.3.3. Narrow waist; 3.3.4. Multiplexing resources; 3.3.5. Smart versus dumb networks; 3.3.6. Distributed management and autonomy; 3.3.7. State machines; 3.3.8. Weak consistency and soft failure; 3.3.9. Distributed routing protocols; 3.3.10. Overlays, virtualization and recursion; 3.4. The Internet; 3.5. Conclusion; Chapter 4. Teleportation; 4.1. The basic teleportation operation; 4.2. Experimental demonstration of teleportation; 4.3. State machines for teleportation; 4.4. Teleporting gates; 4.5. Conclusion; PART 2. Applications.
  • Chapter 5. Quantum Key Distribution5.1. QKD and the purpose of cryptography; 5.2. BB84: single-photon QKD; 5.3. E91: entanglement-based protocol; 5.4. Using QKD; 5.4.1. Campus-to-campus virtual private network; 5.4.2. Transport-layer security (TLS); 5.4.3. Resilience of networks dependent on QKD; 5.5. Existing QKD networks; 5.6. Classical control protocols; 5.7. Conclusion; Chapter 6. Distributed Digital Computation and Communication; 6.1. Useful distributed quantum states; 6.1.1. The stabilizer representation; 6.1.2. GHZ and W states; 6.1.3. Graph states; 6.2. Coin flipping.