|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn878145315 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140408t20132013dk a ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCQ
|d OCLCO
|d OCLCF
|d OCLCQ
|d YDXCP
|d EBLCP
|d DEBSZ
|d BTCTA
|d COCUF
|d ZCU
|d MERUC
|d U3W
|d STF
|d OCLCQ
|d EZ9
|d ICG
|d VT2
|d AU@
|d OCLCQ
|d TKN
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d YDX
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 961593828
|a 962634121
|
020 |
|
|
|a 9788792982940
|q (e-book)
|
020 |
|
|
|a 8792982948
|q (e-book)
|
020 |
|
|
|z 9788792982100
|
029 |
1 |
|
|a AU@
|b 000057161026
|
029 |
1 |
|
|a DEBBG
|b BV044056754
|
029 |
1 |
|
|a DEBSZ
|b 449773582
|
035 |
|
|
|a (OCoLC)878145315
|z (OCoLC)961593828
|z (OCoLC)962634121
|
050 |
|
4 |
|a TK5102.985
|b .D455 2013eb
|
082 |
0 |
4 |
|a 621.3851
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a De Lima, Alexandre Barbosa,
|e author.
|
245 |
1 |
0 |
|a Internet teletraffic modeling and estimation /
|c Alexandre Barbosa de Lima and José Roberto de Almeida Amazonas ; cover design by Fernando Freitas.
|
264 |
|
1 |
|a Aalborg, Denmark :
|b River Publishers,
|c 2013.
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (187 pages) :
|b illustrations, tables
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a River Publishers Series in Information Science and Technology
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed April 7, 2014).
|
505 |
0 |
|
|a Cover; Contents; List of Tables; List of Figures; Preface; List of acronyms and symbols; 1 Introduction; 1.1 Objectives of telecommunications carriers; 1.2 Traffic characteristics; 1.3 Questions and contributions; 1.4 Time series basic concepts; 1.4.1 Time series examples; 1.4.2 Operators notation; 1.4.3 Stochastic processes; 1.4.4 Time seriesmodeling; 2 The fractal nature of network traffic; 2.1 Fractals and self-similarity examples; 2.1.1 The Hurst exponent; 2.1.2 Samplemean variance; 2.2 Long range dependence; 2.2.1 Aggregate process; 2.3 Self-similarity.
|
505 |
8 |
|
|a 2.3.1 Exact second order self-similarity2.3.2 Impulsiveness; 2.4 Final remarks: why is the data networks traffic fractal?; 3 Modeling of long-range dependent teletraffic; 3.1 Classes of modeling; 3.1.1 Non-parametric modeling; 3.2 Wavelet transform; 3.2.1 Multiresolution analysis and the discrete wavelet transform; 3.3 ModelMWM; 3.4 Parametric modeling; 3.4.1 ARFIMAmodel; 3.4.2 ARFIMA models prediction -- optimum estimation; 3.4.3 Formsof prediction; 3.4.4 Confidence interval; 3.4.5 ARFIMAprediction; 3.5 Longmemorystatistical tests; 3.5.1 R/Sstatistics; 3.5.2 GPHtest.
|
505 |
8 |
|
|a 3.6 Some H and d estimation methods3.6.1 R/Sstatistics; 3.6.2 Variance plot; 3.6.3 Periodogram method; 3.6.4 Whittle's method; 3.6.5 Haslett and Raftery's MV approximate estimator; 3.6.6 Abry and Veitch'swavelet estimator; 3.7 Bi-spectrum and linearity test; 3.8 KPSS stationarity test; 4 State-space modeling; 4.1 Introduction; 4.2 TARFIMAmodel; 4.2.1 Multistep prediction with the Kalman filter; 4.2.2 The prediction power of the TARFIMA model; 4.3 Series exploratory analysis; 4.3.1 ARFIMA(0; 0.4; 0) series; 4.3.2 MWM series with H = 0.9; 4.3.3 Nile river series.
|
505 |
8 |
|
|a 4.4 Prediction empirical studywith the TARFIMAmodel4.4.1 ARFIMA(0, d, 0) series; 4.4.2 MWMseries; 4.4.3 Nile river series between years 1007 and 1206; 4.4.4 Conclusions; 5 Modeling of Internet traffic; 5.1 Introduction; 5.2 Modeling of the UNC02 trace; 5.2.1 Exploratory analysis; 5.2.2 Long memory local analysis of the UNC02 trace; 5.2.3 Empirical prediction with the TARFIMA model; 6 Conclusions; Bibliography; Index; About the Authors.
|
520 |
|
|
|a This book presents a new statespace model for Internet traffic, which is based on a finite-dimensional representation of the Autoregressive Fractionally Integrated Moving Average (ARFIMA) random process. The modeling via Autoregressive (AR) processes is also investigated.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Telecommunication
|x Traffic.
|
650 |
|
6 |
|a Télécommunications
|x Trafic.
|
650 |
|
7 |
|a Telecommunication
|x Traffic
|2 fast
|
700 |
1 |
|
|a Amazonas, José Roberto de Almeida,
|e author.
|
700 |
1 |
|
|a Freitas, Fernando,
|e cover designer.
|
776 |
0 |
8 |
|i Print version:
|a De Lima, Alexandre Barbosa.
|t Internet teletraffic modeling and estimation.
|d Aalborg, Denmark : River Publishers, ©2013
|h xx, 165 pages
|k River Publishers Series in Information Science and Technology.
|z 9788792982100
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3400139
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25802363
|
938 |
|
|
|a Baker and Taylor
|b BTCP
|n BK0020002519
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3400139
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10852715
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 303231153
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18126464
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11865589
|
994 |
|
|
|a 92
|b IZTAP
|