Cargando…

Internet teletraffic modeling and estimation /

This book presents a new statespace model for Internet traffic, which is based on a finite-dimensional representation of the Autoregressive Fractionally Integrated Moving Average (ARFIMA) random process. The modeling via Autoregressive (AR) processes is also investigated.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: De Lima, Alexandre Barbosa (Autor), Amazonas, José Roberto de Almeida (Autor)
Otros Autores: Freitas, Fernando (Diseñador de portada)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg, Denmark : River Publishers, 2013.
Colección:River Publishers Series in Information Science and Technology
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn878145315
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 140408t20132013dk a ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d YDXCP  |d EBLCP  |d DEBSZ  |d BTCTA  |d COCUF  |d ZCU  |d MERUC  |d U3W  |d STF  |d OCLCQ  |d EZ9  |d ICG  |d VT2  |d AU@  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d YDX  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 961593828  |a 962634121 
020 |a 9788792982940  |q (e-book) 
020 |a 8792982948  |q (e-book) 
020 |z 9788792982100 
029 1 |a AU@  |b 000057161026 
029 1 |a DEBBG  |b BV044056754 
029 1 |a DEBSZ  |b 449773582 
035 |a (OCoLC)878145315  |z (OCoLC)961593828  |z (OCoLC)962634121 
050 4 |a TK5102.985  |b .D455 2013eb 
082 0 4 |a 621.3851  |2 23 
049 |a UAMI 
100 1 |a De Lima, Alexandre Barbosa,  |e author. 
245 1 0 |a Internet teletraffic modeling and estimation /  |c Alexandre Barbosa de Lima and José Roberto de Almeida Amazonas ; cover design by Fernando Freitas. 
264 1 |a Aalborg, Denmark :  |b River Publishers,  |c 2013. 
264 4 |c ©2013 
300 |a 1 online resource (187 pages) :  |b illustrations, tables 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a River Publishers Series in Information Science and Technology 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed April 7, 2014). 
505 0 |a Cover; Contents; List of Tables; List of Figures; Preface; List of acronyms and symbols; 1 Introduction; 1.1 Objectives of telecommunications carriers; 1.2 Traffic characteristics; 1.3 Questions and contributions; 1.4 Time series basic concepts; 1.4.1 Time series examples; 1.4.2 Operators notation; 1.4.3 Stochastic processes; 1.4.4 Time seriesmodeling; 2 The fractal nature of network traffic; 2.1 Fractals and self-similarity examples; 2.1.1 The Hurst exponent; 2.1.2 Samplemean variance; 2.2 Long range dependence; 2.2.1 Aggregate process; 2.3 Self-similarity. 
505 8 |a 2.3.1 Exact second order self-similarity2.3.2 Impulsiveness; 2.4 Final remarks: why is the data networks traffic fractal?; 3 Modeling of long-range dependent teletraffic; 3.1 Classes of modeling; 3.1.1 Non-parametric modeling; 3.2 Wavelet transform; 3.2.1 Multiresolution analysis and the discrete wavelet transform; 3.3 ModelMWM; 3.4 Parametric modeling; 3.4.1 ARFIMAmodel; 3.4.2 ARFIMA models prediction -- optimum estimation; 3.4.3 Formsof prediction; 3.4.4 Confidence interval; 3.4.5 ARFIMAprediction; 3.5 Longmemorystatistical tests; 3.5.1 R/Sstatistics; 3.5.2 GPHtest. 
505 8 |a 3.6 Some H and d estimation methods3.6.1 R/Sstatistics; 3.6.2 Variance plot; 3.6.3 Periodogram method; 3.6.4 Whittle's method; 3.6.5 Haslett and Raftery's MV approximate estimator; 3.6.6 Abry and Veitch'swavelet estimator; 3.7 Bi-spectrum and linearity test; 3.8 KPSS stationarity test; 4 State-space modeling; 4.1 Introduction; 4.2 TARFIMAmodel; 4.2.1 Multistep prediction with the Kalman filter; 4.2.2 The prediction power of the TARFIMA model; 4.3 Series exploratory analysis; 4.3.1 ARFIMA(0; 0.4; 0) series; 4.3.2 MWM series with H = 0.9; 4.3.3 Nile river series. 
505 8 |a 4.4 Prediction empirical studywith the TARFIMAmodel4.4.1 ARFIMA(0, d, 0) series; 4.4.2 MWMseries; 4.4.3 Nile river series between years 1007 and 1206; 4.4.4 Conclusions; 5 Modeling of Internet traffic; 5.1 Introduction; 5.2 Modeling of the UNC02 trace; 5.2.1 Exploratory analysis; 5.2.2 Long memory local analysis of the UNC02 trace; 5.2.3 Empirical prediction with the TARFIMA model; 6 Conclusions; Bibliography; Index; About the Authors. 
520 |a This book presents a new statespace model for Internet traffic, which is based on a finite-dimensional representation of the Autoregressive Fractionally Integrated Moving Average (ARFIMA) random process. The modeling via Autoregressive (AR) processes is also investigated. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Telecommunication  |x Traffic. 
650 6 |a Télécommunications  |x Trafic. 
650 7 |a Telecommunication  |x Traffic  |2 fast 
700 1 |a Amazonas, José Roberto de Almeida,  |e author. 
700 1 |a Freitas, Fernando,  |e cover designer. 
776 0 8 |i Print version:  |a De Lima, Alexandre Barbosa.  |t Internet teletraffic modeling and estimation.  |d Aalborg, Denmark : River Publishers, ©2013  |h xx, 165 pages  |k River Publishers Series in Information Science and Technology.  |z 9788792982100 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3400139  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25802363 
938 |a Baker and Taylor  |b BTCP  |n BK0020002519 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3400139 
938 |a ebrary  |b EBRY  |n ebr10852715 
938 |a YBP Library Services  |b YANK  |n 303231153 
938 |a YBP Library Services  |b YANK  |n 18126464 
938 |a YBP Library Services  |b YANK  |n 11865589 
994 |a 92  |b IZTAP