Combining pattern classifiers : methods and algorithms /
"Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers. In a didactic, detailed assessment, Combining Pattern Classifiers examines the basic theories and tactics of classi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
Wiley,
2014.
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Titlepage
- Copyright
- Dedication
- Preface
- The Playing Field
- Software
- Structure and What is New in the Second Edition
- Who is This Book For?
- Notes
- Acknowledgements
- 1 Fundamentals of Pattern Recognition
- 1.1 Basic Concepts: Class, Feature, Data Set
- 1.2 Classifier, Discriminant Functions, Classification Regions
- 1.3 Classification Error and Classification Accuracy
- 1.4 Experimental Comparison of Classifiers
- 1.5 Bayes Decision Theory
- 1.6 Clustering and Feature Selection
- 1.7 Challenges of Real-Life Data
- Appendix
- 1.A.1 Data Generation1.A.2 Comparison of Classifiers
- 1.A.3 Feature Selection
- Notes
- 2 Base Classifiers
- 2.1 Linear and Quadratic Classifiers
- 2.2 Decision Tree Classifiers
- 2.3 The NaÃv̄e Bayes Classifier
- 2.4 Neural Networks
- 2.5 Support Vector Machines
- 2.6 The k-Nearest Neighbor Classifier (k-nn)
- 2.7 Final Remarks
- Appendix
- 2.A.1 Matlab Code for the Fish Data
- 2.A.2 Matlab Code for Individual Classifiers
- Notes
- 3 An Overview of the Field
- 3.1 Philosophy
- 3.2 Two Examples
- 3.3 Structure of the Area
- 5.3 Nontrainable (Fixed) Combination Rules5.4 The Weighted Average (Linear Combiner)
- 5.5 A Classifier as a Combiner
- 5.6 An Example of Nine Combiners for Continuous-Valued Outputs
- 5.7 To Train or Not to Train?
- Appendix
- 5.A.1 Theoretical Classification Error for the Simple Combiners
- 5.A.2 Selected Matlab Code
- Notes
- 6 Ensemble Methods
- 6.1 Bagging
- 6.2 Random Forests
- 6.3 Adaboost
- 6.4 Random Subspace Ensembles
- 6.5 Rotation Forest
- 6.6 Random Linear Oracle
- 6.7 Error Correcting Output Codes (ECOC)
- Appendix
- 6.A.1 Bagging6.A.2 AdaBoost
- 6.A.3 Random Subspace
- 6.A.4 Rotation Forest
- 6.A.5 Random Linear Oracle
- 6.A.6 Ecoc
- Notes
- 7 Classifier Selection
- 7.1 Preliminaries
- 7.2 Why Classifier Selection Works
- 7.3 Estimating Local Competence Dynamically
- 7.4 Pre-Estimation of the Competence Regions
- 7.5 Simultaneous Training of Regions and Classifiers
- 7.6 Cascade Classifiers
- Appendix: Selected Matlab Code
- 7.A.1 Banana Data
- 7.A.2 Evolutionary Algorithm for a Selection Ensemble for the Banana Data